期刊文献+

基于视觉双特征的并行联合脑-机接口范式的研究 被引量:2

A Paradigm of a Simultaneous Hybrid BCI Based on the Visual Dual Characteristics
下载PDF
导出
摘要 基于多特征的并行联合脑-机接口与单一特征脑-机接口相比,能利用更多信息和并行方式提高特征提取和系统执行效率。提出了一种基于稳态视觉诱发电位(SSVEP)和运动起始视觉诱发电位(MVEP)的双特征并行联合脑-机接口范式,通过设计3×3字符拼写范式,矩阵中纵列白色竖条按设定频率闪烁诱发SSVEP,横行中白色竖条随机运动诱发MVEP。实验表明,被试者关注目标字符时,两种特征脑电信号被同时诱发出来,并且对两种脑电信号进行特征识别能够检测出被试者选取的目标字符。联合范式并行的刺激编码方式有效节约了刺激诱发时间,为构建更为实用的联合脑-机接口提供了一种实现方法。 A simultaneous hybrid brain-computer interface based on multi-feature of EEG signals has been proved to utilize more information and simultaneous mode to improve feature detection,and more effective in multitasking than traditional BCI based on single EEG feature.A novel HBCI combined SSVEP and MVEP simultaneously is developed.In a 3 by 3 character spelling matrix,vertical white band in columns of characters are flicked at a set frequency to induce SSVEP and a random moving by band in rows to induce MVEP.Results in hybrid paradigm show that target character which subjects selected can be detected by feature identification of SSVEP and MVEP.The proposed system induced two EEG signals simultaneously can reduce running time and fundamentally improve the system processing speed and reduce the visual fatigue.Thus,providing a new way to create a more practical BCI system.
出处 《科学技术与工程》 北大核心 2015年第10期37-41,共5页 Science Technology and Engineering
基金 国家自然科学基金(61175118) 天津市自然科学基金(12JCYBJC19500)资助
关键词 联合脑-机接口 稳态视觉诱发电位 运动起始视觉诱发电位 hybrid BCI steady-state visual evoked potentials(SSVEP) motion-onset visual evoked potentials (MVEP)
  • 相关文献

参考文献10

  • 1Wolpaw J R, Birbaumer N, McFarland D J, et al. Brain-computer in- terfaces for communication and control. Clinical Neurophysiology, 2002;113(6) :767-791.
  • 2Comerehero M D, Polich J. P3a and P3b from typical auditory and visual stimuli. Clinical Neurophysiology, 1999 ; 110 ( 1 ) : 24-30.
  • 3Regan D. Human brain eleetrophysiology: evoked potentials and evoked magnetic fields in science and medicine. New York: Elsevier, 1989:50-87.
  • 4Guo F, Hong B, Gao X, et al. A brain-computer interface using mo- tion..onset visual evoked potential. Journal of Neural Engineering, 2008; 5(4): 477-485.
  • 5Hong B, Guo F, Liu T, eta/. N200-spoller using motion-onset visual response. Clinical Neurephysiolngy, 2009; I20(9) : 1658-1666.
  • 6Kaufmann T, Hammer E M, Kttbler A. ERPs Contributing to Classifi- cation in the P300 BCI. 5th International Braln-Computer Interface Conference. Graz, Austria: MUller Putz GR, Scherer R, Billinger M, eta/. Eds. , 2011:136-139.
  • 7Pfurtscheller G, Allison B Z, Brtumer C, eta/. The hybrid BCI. Frontiers in Neumscience, 2010; 4(42):1-5.
  • 8Jin J, Allison B Z, Wang X, et al. A combined brain-computer inter- face based on P300 potentials and motion-onset visual evoked poten- tials. Journal of Neuroscience Methods, 2012 ; 205 (2) : 265-276.
  • 9Punsawad Y, Wongsawat Y. Motion visual stimulus for SSVEP-based BCI system. Engineering in Medicine and Biology Society ( EMBC ), 2012 Annual International Conference of the IEEE, IEEE, 2012: 3837-3840.
  • 10Lotte F, Congedo M, L6cuyer A, et al. A review of classification al- gorithms for EEG-based brain-computer interfaces. Journal of Neural Engineering, 2007; 4(2) :R1-RI3.

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部