摘要
Abstract Let M^2 be an umbilic-free surface in the unit sphere S^3. Four basic invariants of M^2 under the Moebius transformation group of S^3 are Moebius metric g, Blaschke tensor A, Moebius second fundamental form B and Moebius form φ. We call the Blaschke tensor is isotropic if there exists a smooth function λ such that A = λg. In this paper, We classify all surfaces with isotropic Blaschke tensor in S^3.
Abstract Let M^2 be an umbilic-free surface in the unit sphere S^3. Four basic invariants of M^2 under the Moebius transformation group of S^3 are Moebius metric g, Blaschke tensor A, Moebius second fundamental form B and Moebius form φ. We call the Blaschke tensor is isotropic if there exists a smooth function λ such that A = λg. In this paper, We classify all surfaces with isotropic Blaschke tensor in S^3.
基金
Supported by NSFC(Grant No.10861013)