期刊文献+

Surfaces with Isotropic Blaschke Tensor in S^3 被引量:1

Surfaces with Isotropic Blaschke Tensor in S^3
原文传递
导出
摘要 Abstract Let M^2 be an umbilic-free surface in the unit sphere S^3. Four basic invariants of M^2 under the Moebius transformation group of S^3 are Moebius metric g, Blaschke tensor A, Moebius second fundamental form B and Moebius form φ. We call the Blaschke tensor is isotropic if there exists a smooth function λ such that A = λg. In this paper, We classify all surfaces with isotropic Blaschke tensor in S^3. Abstract Let M^2 be an umbilic-free surface in the unit sphere S^3. Four basic invariants of M^2 under the Moebius transformation group of S^3 are Moebius metric g, Blaschke tensor A, Moebius second fundamental form B and Moebius form φ. We call the Blaschke tensor is isotropic if there exists a smooth function λ such that A = λg. In this paper, We classify all surfaces with isotropic Blaschke tensor in S^3.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第5期863-878,共16页 数学学报(英文版)
基金 Supported by NSFC(Grant No.10861013)
关键词 Moebius geometry Blaschke tensor ISOTROPIC Moebius geometry, Blaschke tensor, isotropic
  • 相关文献

参考文献2

二级参考文献3

共引文献28

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部