期刊文献+

Local Discontinuous Galerkin Method for Parabolic Interface Problems

Local Discontinuous Galerkin Method for Parabolic Interface Problems
原文传递
导出
摘要 In this paper, the minimal dissipation local discontinuous Galerkin method is studied to solve the parabolic interface problems in two-dimensional convex polygonal domains. The interface may be arbitrary smooth curves. The proposed method is proved to be L2 stable and the order of error estimates in the given norm is O(h|logh|^1/2). Numerical experiments show the efficiency and accuracy of the method. In this paper, the minimal dissipation local discontinuous Galerkin method is studied to solve the parabolic interface problems in two-dimensional convex polygonal domains. The interface may be arbitrary smooth curves. The proposed method is proved to be L2 stable and the order of error estimates in the given norm is O(h|logh|^1/2). Numerical experiments show the efficiency and accuracy of the method.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2015年第2期453-466,共14页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(Grant No.11171038) Youth Foundation of Tianyuan Mathematics(Grant No.11126279) The Science Foundation of China Academy of Engineering Physics(Grant No.2013A0202011) Defense Industrial Technology Development Program(Grant No.B1520133015)
关键词 parabolic interface problem minimal dissipation local discontinuous Galerkin method error estimates parabolic interface problem minimal dissipation local discontinuous Galerkin method error estimates
  • 相关文献

参考文献1

二级参考文献33

  • 1F. Bassi and Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131 (1997), 267-279.
  • 2D.J. Benney, Long waves on the liquid films, J. Math. Phys., 45 (1966), 150-155.
  • 3J.L. Bona, V.A. Dougalis, O.A. Karakashian and W.R. McKinney, Computations of blow-up and decay for periodic solutions of the generalized Korteweg-de Vries-Burgers equation, Appl. Numer.Math., 10 (1992), 335-355.
  • 4J.P. Boyd, Weakly non-local solitons for capillary-gravity waves: fifth-order Korteweg-de Vires equation, Physica D, 48 (1991), 129-146.
  • 5J.P. Boyd, Numerical computations of a nearly singular nonlinear equation: Weakly nonlocal bound states of solitons for the fifth-order Korteweg-de Vires equation, J. Comput. Phys., 124(1996), 55-70.
  • 6J. Canosa and J. Gazdag, The Korteweg-de Vires-Burgers equation, J. Comput. Phys., 23 (1977),393-403.
  • 7B. Cockburn, Discontinuous Galerkin methods for methods for convection-dominated problems,in High-Order Methods for Computational Physics, T.J. Barth and H. Deconinck, editors, Lecture Notes in Computational Science and Engineering, volume 9, Springer, 1999, 69-224.
  • 8B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV- the multidimensional case, Math. Comp., 54(1990), 545-581.
  • 9B. Cockburn, G. Karniadakis and C.-W. Shu, The development of discontinuous Galerkin methods,in Discontinuous Galerkin Methods: Theory, Computation and Applications, B. Cockburn, G.Karniadakis and C.-W. Shu, editors, Lecture Notes in Computational Science and Engineering,volume 11, Springer, 2000, Part I: Overview, 3-50.
  • 10B. Cockburn, S.-Y. Lin and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems, J. Comput. Phys., 84(1989), 90-113.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部