期刊文献+

基于单声矢量传感器的语音信号时频掩蔽盲分离改进算法 被引量:1

An Improved Blind Speech Separation Algorithm via Time-frequency Masking Based on a Single Acoustic Vector Sensor
下载PDF
导出
摘要 利用单声矢量传感器精确的测向能力,提出了一种基于波达方位估计(DOA)的语音信号盲分离改进算法。该算法在时频域进行,采用基于混合冯·米塞斯分布的期望最大化算法对混合信号中各个源信号在每个时频点的概率进行估计。基于此,针对高混响及信号方位较近时很难估计到均值的问题,提出了一种简单、有效的改进算法,并在不同混响强度、不同方位差及不同混合信号数目情况下对其进行了仿真验证。仿真结果表明,相较于二值时频掩蔽和泛值时频掩蔽,文中提出的改进算法在信号-失真率(SDR)和客观感知质量(PESQ)两方面均有较大提高。 An improved blind speech separation algorithm is presented based on the direction of arrival(DOA) estimation, which is obtained by the precise direction finding ability of a single acoustic vector sensor(AVS). The proposed algorithm works in time-frequency domain, in which the probability at each time-frequency unit of a specific source is estimated via an expectation-maximization(EM) algorithm based on the von Mises distribution mixture model. Because the mean value is difficult to estimate when the reverberation level is high or the sources are placed closely, a simple but effective improved algorithm is proposed, and is verified via simulation under different reverberation level, direction difference and source number. Simulation results show that the improved algorithm is superior to the binary time-frequency masking algorithm and the soft time-frequency masking algorithm in terms of signal-to-distortion ratio(SDR) and perceptual evaluation of speech quality(PESQ).
出处 《鱼雷技术》 2015年第2期98-103,共6页 Torpedo Technology
关键词 语音信号盲分离 声矢量传感器 波达方位估计 期望最大化算法 blind speech separation acoustic vector sensor(AVS) direction of arrival(DOA) estimation expectation maximization(EM) algorithm
  • 相关文献

参考文献8

  • 1Comon P, Jutten C. Handbook of Blind Source Separation: Independent Component Analysis and Applications[J]. IEEE Signal Processing Magazine, 2010, 30(2):133-134.
  • 2Yilmaz O, Rickard S. Blind Separation of Speech Mix- tures via Time-Frequency Masking[J]. IEEE Transactions on Signal Processing, 2004, 52(7): 1830-1847.
  • 3Nehorai A, Paldi E. Acoustic Vector-Sensor Array Proc- essing[J]. IEEE Transaction on Signal Processing, 1994, 42(9): 2481-2489.
  • 4Shujau M, Ritz C H, Burnet I S. Separation of Speech Sources using an Acoustic Vector Sensor[C]//IEEE Interna- tional Workshop on Multimedia Signal Processing, 2011.
  • 5Gunel B, Hachabiboglu H, Kondoz A M. Acoustic Source Separation of Convolutive Mixtures based on Intensity Vector Statistics[J]. IEEE Transactions on Audio, Speech and Language Processing, 2008, 16(4): 748-756.
  • 6Hung W L, Chang-Chien S J, Yang M S. Self-Updating Clustering Algorithm for Estimating the Parameters in Mixtures of von Mises Distributions[J]. Journal of App- lied Statistics, 2012, 39(10): 2259-2274.
  • 7Allen J B, Berkley D A. Image Method for Efficiently Simulating Small-Room Acoustics[J]. Journal of the Ac- oustical Society of America, 1979, 65(4): 943-950.
  • 8Thiede T, Treurniet W C, Bitto R. PEAQ-The ITU Stan- dard for Objective Measurement of Perceived Audio Qu- ality[J]. Journal of the Audio Engineering Society, 2000, 48(1): 3-29.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部