期刊文献+

浮标无线通信中的联合信源信道编码性能 被引量:1

Characterization of Joint Source-channel Coding in Buoy Wireless Communication
下载PDF
导出
摘要 浮标无线通信系统可以对战场环境信息第一时间进行传送与分析。但其工作环境具有资源有限、时变等特点,基于分离原则的编码很难适用于这种复杂情况。基于此,文中分析了浮标无线通信中不同信源特性,并分别针对传感器信息和图像视频信息提出了2种基于不等差错保护和LDPC码的信源信道联合编码方法。仿真结果表明,所提方法可以在提高系统传输效率的同时,显著提高了对传感器的重要数据和图像视频的恢复能力,保证了传输可靠性,为海军综合作战能力的提升提供参考。 Buoy wireless communication system can transmit and analyze battlefield environment information in time. But its working environment has limited resources, time-varying characteristics, and so on. Coding based on the principle of separation is not suitable for this complicated situation. This paper analyzes the characteristics of different sources in buoy wireless communication, and proposes two joint source-channel coding methods based on unequal error protection and low density parity check(LDPC) coding for sensor information and image/video information, respectively. Simulation results show that the proposed methods can significantly improve the restorability of important sensor data and image/video information while improving the efficiency of transmission, and ensure the transmission reliability. This study may help to enhance integrated operational capability of Chinese Navy.
出处 《鱼雷技术》 2015年第2期134-138,144,共6页 Torpedo Technology
基金 水下信息与控制重点实验室开放基金资助项目(914OC230104130C23006)
关键词 浮标无线通信 战场环境 不等差错保护 信源信道联合编码 buoy wireless communication battlefield environment unequal error protection joint source-channel coding
  • 相关文献

参考文献2

二级参考文献18

  • 1陈岩 张建兰 陈庚.应用扩频和分集技术进行水声通讯的研究[J].声学技术,2001,20:170-172.
  • 2CHITRE M, SHAHABUDEEN S, STOJANOVIC M. Underwater Acoustic communications&networking: recent advances and futurechallenges[J]. Marine Technology Society Journal, 2008, 42(1): 103-116.
  • 3RICE J, CREBER B, FLETCHER C, et al. Evolution of seaweb underwater acoustic networking[C]. OCEANS 2000 MTS/IEEE Conference and Exhibition, 2000, 3: 2007-2017.
  • 4ADAMS A E, HINTON O R, SHARIF G, et al. An experiment in sub-sea networks-the LOTUS sea trials[C]. Proc.5th European Conf.Underwater Acoustics, Lyon, France, July 2000.
  • 5MAM W, RICE J, FLETCHER C, et al. The Evolution of Radio/Acoustic Communication Gateway Buoys[C]. OCEANS 2005 MTS/IEEE Conference and Exhibition, 2005, 2: 1863-1870.
  • 6STOJANOVIC M, CAPTIPOVIC J A, PROAKIS J G Phase coherent digital communications for underwater acoustic channels[J]. IEEE Journal of Oceanic Engineering, 1994, 19(1): 100-11 1.
  • 7SHARIF B S, NEASHAM J, HINTON O R, et al. A computationally efficient doppler compensation system for underwater acoustic communications[J]. IEEE Joural of Oceanic Engineering, 2000, 25: 52-61.
  • 8STOJANOVIC M, PROAKIS J, CAPTIPOVIC J. Performance of a high-rate adaptive equalization on a shallow water acoustic channel[J]. J. Acoust. Soc. Am., 1996, 100(4): 2213-2219.
  • 9KILFOYLE D B, BAGGEROER A B. The State of the Art in Underwater Acoustic Telemetry[J]. IEEE Journal of OceanicEngineering, 2000, 25(1): 4-27.
  • 10STOJANOVIC M, CAPTIPOVIC J A, PROAKIS J G Adaptive multichannel combining and equalization for underwater acoustic communications[J]. J. Acoust. Soc. Am., 1993, 94(3): 1621 - 1631.

共引文献8

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部