期刊文献+

Nonlinear Schrdinger equations on compact Zoll manifolds with odd growth

Nonlinear Schrdinger equations on compact Zoll manifolds with odd growth
原文传递
导出
摘要 We study nonlinear Schr¨odinger equations on Zoll manifolds with nonlinear growth of the odd order.It is proved that local uniform well-posedness are valid in the Hs-subcritical setting according to the scaling invariance, apart from the cubic growth in dimension two. This extends the results by Burq et al.(2005) to higher dimensions with general nonlinearities. We study nonlinear Schrodinger equations on Zoll manifolds with nonlinear growth of the odd order. It is proved that local uniform well-posedness are valid in the H^s-subcritical setting according to the scaling invariance, apart from the cubic growth in dimension two. This extends the results by Burq et al. (2005) to higher dimensions with general nonlinearities.
作者 YANG JianWei
出处 《Science China Mathematics》 SCIE CSCD 2015年第5期1023-1046,共24页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.11171033 and 11231006)
关键词 Schrodinger equations Zoll manifolds Bourgain space 非线性薛定谔方程 歧管 紧凑 非线性增长 缩放不变性 奇数阶 适定性 亚临界
  • 相关文献

参考文献55

  • 1Alinhac S, Gérard P. Pseudo-Differential Operators and the Nash-Moser Theorem. Providence, RI: Amer Math Soc,2007.
  • 2Besse A. Manifolds All of Whose Geodesics are Closed. Berlin-New York: Springer-Verlag, 1978.
  • 3Bourgain J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I: Schr?dinger equations. Geom Funct Anal, 1993, 3: 107-156.
  • 4Bourgain J. Exponential sums and nonlinear Schr?dinger equations. Geom Funct Anal, 1993, 3: 157-178.
  • 5Bourgain J. Global well-posedness of defocusing critical nonlinear Schrodinger equations in the radial case. J Amer Math Soc, 1999, 12: 145-171.
  • 6Bourgain J. Global Solutions of Nonlinear Schr?dinger Equations. Providence, RI: Amer Math Soc, 1999.
  • 7Bourgain J. Global well-posedness of defocusing critical nonlinear Schr?dinger equations in the radial case. J Amer Math Soc, 1999, 12: 145-171.
  • 8Bourgain J. Moment inequalities for trigonometric polynomials with spectrum in curved hypersurfaces. Israel J Math,2013, 193: 441-458.
  • 9Bourgain J, Demeter C. Improved estimates for the discrete Fourier restriction to the higher dimensional sphere. Illinois J Math, arXiv:1205.2414, 2012.
  • 10Bourgain J, Demeter C. New bounds for the discrete Fourier restriction to the sphere in four and five dimensions. Inter Math Res Not, doi: 10.1093/imrn/rnu036, 2014.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部