摘要
从直线上的Newton-Leibniz公式,在平面上的Green公式,在空间的Gauss公式,在曲面上的Stokes公式出发,在引入外微分的概念后,这几个公式可以统一地用一个公式来表示,它们只是在不同维数的空间中的体现,本质是相似的,推广了Stokes公式,进一步指出了公式Stokes在积分计算方面的重要性.
From Newton-Leibniz formula on straight line, Green formula on plane, Gauss formula in space,Stokes formula over a curved surface, the author introduced the concept of exterior differential so that above formulas can be expressed by one formula uniformly, and they are reflected in different dimension in space but their essence are similar. The author promoted Stokes formula, and further pointed out that the Stokes formula for calculating the importance of the integral.
出处
《广东技术师范学院学报》
2015年第2期6-8,共3页
Journal of Guangdong Polytechnic Normal University
关键词
微分流形
诱导定向
STOKES公式
differentiable manifold
induced orientation
Stokes formula