期刊文献+

混合核函数中权重求解方法 被引量:8

Weight Solving Method in Hybrid Kernel Function
下载PDF
导出
摘要 为了克服支持向量机(SVM)中单核函数的局限性,经常使用混合核函数做预测,但混合核函数中各函数权重难以确定.为解决该问题,提出了一种基于特征距离的权重求解方法.该方法首先利用支持向量机的几何意义,根据同类样本特征距离最小化和异类样本特征距离最大化原理,分析得出优化函数,然后对优化函数求解得出权重系数.实验结果表明,与传统的交叉验证法和PSO算法相比,该方法在保证预测精度的情况下,将计算时间减少了70%左右. In order to overcome the limitation of single kernel in Support Vector Machine(SVM) model, hybrid kernel is usually used in forecasting. However, the weight of functions in the hybrid kernel is hard to calculate. To solve this problem, we propose a new method based on feature.distance. This method firstly gets an optimization function based on SVM's geometric meaning and a principle, which is the feature-distance of the same kind should be minimized and the different should bc maximized, and then analyzes the optimization function to work out the weight. Experimental results show that compared with the cross validation method and PSO algorithm, this method reduces the computing time nearly by 70% with the accuracy kept unchanged.
作者 王行甫 俞璐
出处 《计算机系统应用》 2015年第4期129-133,共5页 Computer Systems & Applications
基金 国家科技重大专项(2012ZX10004-301-609) 国家自然科学基金(61272472 61232018 61202404) 安徽省教学研究计划2010
关键词 支持向量机 核函数 权重 特征距离 SVM kernel function weight feature-distance
  • 相关文献

参考文献12

  • 1Vapnik VN. Statistical Learning Theory. New York: Wiley, 1998.
  • 2Gonen M, Alpaydin E. Multiple kernel learning algorithms. Journal of Machine Learning Research, July 2011, 12(2): 2211-2268.
  • 3Muller KR, Mika S, Ratsch G, Tsuda K, Scholkopf B. An introduction to kernel based learning algorithms. IEEE Trans. on Neural Networks, 2001,12(2):181-201.
  • 4丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):2-10. 被引量:913
  • 5汪洪桥,孙富春,蔡艳宁,陈宁,丁林阁.多核学习方法[J].自动化学报,2010,36(8):1037-1050. 被引量:156
  • 6Kingsbury N, Tay DBH, Palaniswami M. Multi-scale kernel methods for classication. Proc. of the IEEE Workshop on Machine Learning for Signal Processing. Washington D. C., USA. IEEE. 2005. 43-48.
  • 7Argyriou A, Hauser R, Micchelli CA, Pontil M. A DC-programming algorithm for kernel selection. Proc. of the 23rd International Conference on Machine Learning. Pittsburgh, USA: ACM, 2006. 41-48.
  • 8王国胜.核函数的性质及其构造方法[J].计算机科学,2006,33(6):172-174. 被引量:52
  • 9Smits GF, Jordan EM. Improved SVM regression using mixtures of kernels. Proc. of the 2002International Joint Conference on Neural Networks. Hawaii. IEEE. 2002. 2785-2790.
  • 10Galewski MA. Modal parameters identification with particle swarm optimization. Progress in Mechanical Engineering and Technology. 2014. 597. 119-124.

二级参考文献52

共引文献1117

同被引文献52

引证文献8

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部