期刊文献+

基于用户行为周期的移动设备异常检测方法 被引量:2

User Behavior Cycle-Based Statistical Approach for Anomaly Detecting on Mobile Devices
下载PDF
导出
摘要 本文提出了一种分布式的移动设备异常检测系统,该系统采用客户端-服务器架构,客户端程序在移动设备上持续提取特征并传送给服务器,服务器使用异常检测算法分析特征.根据人类日常活动的规律性以及用户使用移动设备的周期性,我们还提出了一种基于用户行为周期的异常检测方法,通过比较待检测特征向量和以往周期相近时间段的特征向量集的距离即可判定该特征向量是否异常,向量比较时采用不受特征间关联以及特征取值范围影响的马氏距离作为距离衡量的标准.实验证明我们采用的移动设备异常检测系统框架和检测方法能够有效提高对移动设备恶意程序的检测率. In this paper, we present a distributed anomaly detection system for mobile devices. The proposed framework realizes a client-server architecture, the client continuously extracts various features of mobile device and transfers to the server, and the server's major task is to detect anomaly using state-of-art detection algorithms. According to the regularity of human daily activity and the periodic of using mobile device, we also propose a novel user behavior cycle based statistical approach, in which the abnormal is determined by the distance from the undetermined feature vector to the similar time segments' vectors of previous cycles. We use the Mahalanobis distance as distance metric since it is rarely affected by the correlate and value range of features. Evaluation results demonstrated that the proposed framework and novel anomaly detection algorithm could effectively improve the detection rate of malwares on mobile devices.
出处 《计算机系统应用》 2015年第4期184-189,共6页 Computer Systems & Applications
基金 国家自然科学基金(61272131)
关键词 异常检测 行为周期 马氏距离 特征提取 anomaly detection behavior cycle mahalanobis distance feature extraction
  • 相关文献

参考文献15

  • 1Schmidt AD, Albayrak S. Malicious Software for SmartphonesTechnical Report. TUB-DAI 02/08-01, 2008.
  • 2Schmidt AD, Schmidt HG, Batyuk L. Smartphone malware evolution revisited: Android next target? Malicious and Unwanted Software (MALWARE) 4th International Conference. 2009.
  • 3Patcha A, Park JM. An overview of anomaly detection techniques: Existing solutions and latest technological trends. Computer Networks, 2007, 51(12): 3448-3470.
  • 4Chandola V, Banerjee A, Kumar A. Anomaly Detection: A Survey. ACM Computing Surveys, 2009, 41(3): 151-158.
  • 5Shon T, Kim Y, Lee C, Moon J. A machine learning framework for network anomalydetection using SVM and GA. IEEE Workshop on Information Assurance and Security. US Military Academy, West Point, NY. 2005.
  • 6Li Y, Guo L. An efficient network anomaly detection schemebased on TCM-KNN algorithm and data reduction mechanism. IEEE Workshop on Information Assurance and Security. US Military Academy. West Point, NY. 2007. 20-22.
  • 7Cheng J, Wong SHY, Yang H, Lu SW. SmartSiren: Virus detection and alert for smartphones. Proc. of MobiSys. 2007. 258-271.
  • 8Timothy KB, Theresa M. Mobile Device Profiling and Intrusion Detection using Smart Batteries. HICSS, 2008.
  • 9Bose A, Hu X, Shin KG, Park T. Behavioral detection d9of malware on mobile handsets. Proc. of the 6th International Conference on Mobile Systems, Applications and Services. New York. 2008. 225-238.
  • 10Shamili AS, Bauckhage C, Alpcan T. Malware detection on mobile devices using distributed machine learning. 201020th International Conference on Pattern Recognition (ICPR). 2010.

同被引文献40

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部