期刊文献+

本体稀疏向量迭代计算算法 被引量:1

Iterative Computation Algorithm for Ontology Sparse Vector
下载PDF
导出
摘要 用机器学习方法得到本体函数时,需要将每个本体概念所对应的信息用一个p维向量来表示。在很多应用背景下,由于p值很大而导致计算量庞大。通过稀疏向量的学习来得到本体函数,利用块方法设计一种迭代计算算法进而得到稀疏向量。将该算法应用于生物基因GO本体和物理教育本体,并将实验结果与已有算法的结果作对比,验证了算法在生物基因领域的相似度计算和在物理教育学领域建立本体映射上有较高的效率。 The information for each vertex should be expressed as a p dimension vector when we apply machine learning technology to ontology. In many applications, it leads to large computation cost since p is large. In this paper, the ontology function was obtained in terms of sparse vector learning. The optimal sparse vector was yielded via iterative computation algorithm based on block technology. The algorithm was applied to the GO and physical education ontologies, and the results from our algorithm were compared with results from previous algorithms. It showed that the new algorithm had higher efficiency for calculating the similarity in biology gene field and for establishing the ontology mappings in physical education application.
作者 高炜
出处 《新乡学院学报》 2015年第3期33-36,共4页 Journal of Xinxiang University
基金 国家自然科学基金青年科学基金项目(11401519)
关键词 本体 相似度计算 本体映射 稀疏向量 ontology similarity measure ontology mapping sparse vector
  • 相关文献

参考文献10

二级参考文献71

  • 1黄果,周竹荣,周亭.基于语义网的信息检索研究[J].西南大学学报(自然科学版),2007,29(1):77-80. 被引量:12
  • 2黄果,周竹荣.基于领域本体的概念语义相似度计算研究[J].计算机工程与设计,2007,28(10):2460-2463. 被引量:67
  • 3LUXBURG U, BELKIN M, BOUSQUET O. Consistency of spectral clustering[J]. Ann Stat, 2008, 36(2): 555-586.
  • 4CHUNG F. Spectral graph theory[M]. Fresno: American Mathem Atical Society, 1997: 1-50.
  • 5ZHOU D X. Capacity of reproducing kernel spaces in learning theory[J]. IEEE Trans Inform Theory, 2003, 49(7): 1 743-1 752.
  • 6ZHOU D. The covering number in learning theory[J]. J Complexity, 2002, 18(3): 739-767.
  • 7CUCKER F, ZHOU D. Learning theory: an approximation theory viewpoint[M[. Cambridge: Cambridge University Press, 2007: 113-117.
  • 8Zhou D, Huang J, SchOlkopf B. Beyond pairwise classification and clustering using hypergraphs[P]. Canada.. University of Waterloo, 2005.
  • 9Zhou Dengyong, Huang Jiayuan, Bernhard Scholkopf Learning with Hypergraphs: Clustering, Classification, and Embedding[C]// Proceedings of 20th Annual Conference on Neural Information Processing SysterrLs, 2.006, Vancouver / Whistler, Canada: IEEE 2006 : 1601-1608.
  • 10Liang Sun, Shuiwang Ji, Jieping Ye. Hypergraph spectral learning for multi--label classification[C]// Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. Las Vegas, Nevada, USA: ACM, 2008:668--676.

共引文献43

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部