期刊文献+

基于微博交互信息的社交网络推荐算法 被引量:1

下载PDF
导出
摘要 微博作为近年来的热门社交网络平台,其用户行为、兴趣模型及个性化推荐深受国内外学者关注。针对微博社交网络的弱关系特点,结合用户实时交互信息与用户基本信息,提出一种综合考虑用户基本信息与用户交互信息的用户相似度计算方法;进而在UserCF算法的基础上,提出一种基于微博交互信息的推荐算法。该算法考虑了微博平台的弱连接关系特点,能有效针对微博类社交网络进行用户推荐。通过实际社交数据集实验证明,该算法具有良好的执行效率与推荐效果。
出处 《软件导刊》 2015年第4期63-66,共4页 Software Guide
  • 相关文献

参考文献13

  • 1文瑞.微博之识[J].软件工程师,2009(12):20-20. 被引量:4
  • 2CHEN J, GEYER W, DUGAN C,et al. Proceedings of the 27th International Conference on Human Foctors in Computing Sysrems [C]. New York, NK. USA, 2009: 201-210.
  • 3SARWAR BM, KARYPIS G, KONSTAN J A. Analysis of recom- mendation algorithms for Proceedings of the 2nd ACM Conference on Electronic Commerce (EC-00) I-C]. Minneapolis, MN, USA, 2000z158-167.
  • 4LINDEN GREG, SMITH BRENT, YORK JEREMY. AMAZON. com recommendations: item to item collaborative filtering [J]. IEEE Internet Computing, 2003, 7(1): 76-80.
  • 5赵岩露,王晶,沈奇威.基于特征分析的微博用户兴趣发现算法[J].电信工程技术与标准化,2012,25(11):79-83. 被引量:8
  • 6袁园,孙霄凌,朱庆华.微博用户关注兴趣的社会网络分析[J].现代图书情报技术,2012(2):68-75. 被引量:32
  • 7SHEN D, SUN J T, YANG Q, et al. Latent friend mining from blog data[-C]. Data Mining, 2006. ICDM'06. Sixth International Conference on. IEEE, 2006: 552-561.
  • 8ZHENG Y, CHEN Y, XIE X, et al. GeoLife2.0: a location-based social networking service[-C]. Mobile Data Management: Systems, Services and Middleware, 2009. MDMf09. Tenth International Conference on. IEEE, 2009: 357-358.
  • 9WU Z, JIANG S, HUANG Q. Friend recommendation according to appearances on photos[-C]. Proceed-ings of the 17th ACM inter- national conference on Multimedia. ACM, 2009:987-988.
  • 10于海群,刘万军,邱云飞.基于用户话题偏好的社会网络二级人脉推荐[J].计算机应用,2012,32(5):1366-1370. 被引量:9

二级参考文献48

  • 1周继恩,刘贵全,张春阳,蔡庆生.基于内部信念状态POMDP模型在用户兴趣获取中的应用[J].小型微型计算机系统,2004,25(11):1979-1983. 被引量:5
  • 2微博-百度百科[EB/OL].[2010-12-01].http://baike.baidu.com/view/1567099.htm.
  • 3中国网络媒体论坛[EB/OL].(2011-11-22).[2011-12-22].http://www.chinaz.com.
  • 4Adomavicius G,Tuzhilin A.Toward the Next Generation of Recom-mender Systems:A Survey of the State of the Art and Possible Ex-tensions[J].IEEE Transaction on Knowledge and Data Engineer-ing,2005,17(6):734-749.
  • 5Java A,Song X D,Finin T,et al.Why We Twitter:UnderstandingMicrobolgging Usage and Communities[C].In:Proceedings of the9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining andSocial Network Analysis.New York:ACM Press,2007:56-65.
  • 6Adar E,Zhang L,Adamic L,et al.Implicit Structure and the Dy-namics of Blogspace[C].In:Proceedings of the 13th InternationalWorld Wide Web Conference:Workshop on the Weblogging Ecosys-tem.New York:ACM Press,2004:751-758.
  • 7Delwiche A.Agenda-setting,Opinion Leadership,and the Worldof Web Logs[C].In:Proceedings of the International Communica-tion Association Conference,New Orleans,LA.2005.
  • 8Fu F,Chen X,Liu L,et al.Social Dilemmas in an Online SocialNetwork:The Structure and Evolution of Cooperation[J].PhysicsLetters A,2007,371(1-2):58-64.
  • 9Teutle A R M.Twitter:Network Properties Analysis[C].In:Pro-ceedings of the 20th International Conference on Electronics,Com-munications and Computer,Cholula,Mexico.New York:IEEE,2010:180-186.
  • 10Fischer E,Rebecca R A.Social Interaction via New Social Media:How can Interactions on Twitter Affect Effectual Thinking and Be-havior[J].Journal of Business Venturing,2011,26(1):1-18.

共引文献170

同被引文献6

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部