期刊文献+

水热反应合成Li掺杂TiO_2纳米棒阵列的研究

Hydrothermal Synthesis of Li-doped TiO_2 Nanorod Arrays
下载PDF
导出
摘要 本文利用水热法制备Li掺杂TiO2纳米棒阵列,采用场发射扫描电子显微镜(FESEM)和X射线衍射仪(XRD)分析Li掺杂对TiO2纳米棒阵列的形貌及结构影响,确定了最佳Li掺杂量为9%,并作为光阳极组装染料敏化太阳能电池,利用万能电子表测试电池的开路电压,当Li掺杂量为9%时,电池的开路电压最大为0.299V,较未掺杂提高59%。 In this paper, Li-doped TiO2 nanorod arrays were prepared by hydrothermal synthesis and characterized by field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The effect of Li doping content on the morphology and structure of nanorods arrays was inverstigated. The dye-sensitized solar cells (DSSC) were assembled and the open circuit voltage was tested as well. The results showed that the optimum Li doping content is 8% with hydrothermal temperature of 180 ℃ and reaction time for 8h. The phase structure of Li-doped TiO2 nanorod arrays remains rutile, but the interplanar spacing decreases. The lattice defects suppress the recombination of electrons effectively. For DSSC with Li doping content of 9%, the maximum open circuit voltage is 0.299V, increased by 59% in contrast to that of undoped one.
出处 《天津化工》 CAS 2015年第2期8-10,共3页 Tianjin Chemical Industry
关键词 TIO2 纳米棒 光阳极 染料敏化太阳能电池 TiO2 Nanorod Photonanode Dye sensitized solar cell (DSSC)
  • 相关文献

参考文献5

二级参考文献109

  • 1戴松元,王孔嘉,邬钦崇,王瑜.NPC电池高光电转换效率原因探讨[J].太阳能学报,1996,17(3):220-225. 被引量:14
  • 2O’Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353: 737-740.
  • 3Nazeeruddin M K, Kay A, Rodocio I, et al. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN- and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc., 1993, 115(14): 6382-6390.
  • 4Gratzel M. Photoelectrochemical cells. Nature, 2001, 414(6861): 338-344.
  • 5Gratzel M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem., 2005, 44(20): 6841-6851.
  • 6Jung H S, Lee J K, Nastasi M, et al. Preparetion of nanoporous MgO-coated TiO2 nanoparticles and their application to the electrode of dye-sensitized solar cells. Langmuir, 2005, 21(23): 10332-10335.
  • 7Lee S, Kim J Y, Hong K S, et al. Enhancement of the photoelectric performance of dye-sensitized solar cells by using a CaCO3-coated TiO2 nanoparticle film as an electrode. Sol. Energy Mater. Sol. Cells., 2006, 90(15): 2405-2412.
  • 8Ruhle S, Cahen D. Electron tunneling at the TiO2/substrate interface can determine electrical characteristics of dye- sensitized solar cells. J. Phys. Chem. B, 2004, 108(46): 17946-17951.
  • 9Burke A, Ito S, Snaith H, et al. The function of a TiO2 compact layer in dye-sensitized solar cells incorporating “Planar” organic dyes. Nano Lett., 2008, 8(46): 977-981.
  • 10Tachibana Y, Umekita K, Otsuka Y, et al. Performance improvement of CdS quantum dots sensitized TiO2 solar cells by introducing a dense TiO2 blocking layer. J. Phys. D. Appl. Phys., 2008, 41(10): 102002-102005.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部