期刊文献+

广义Littlewood-Paley算子交换子在Herz型Hardy空间上的CMO估计

CMO Estimates for Commutators and Generalized Littlewood-Paley Operators on Herz-type Hardy Spaces
下载PDF
导出
摘要 讨论了广义Littlewood-Paley算子g*φ,λ与CMO(Rn)函数b生成的交换子[b,g*φ,λ]从HKa1,pq1b(Rn)空间到Ka2,pq2(Rn)空间的有界性;在端点处讨论了交换子[b,g*φλ]从HKa1,pq1b(Rn)空间到WKa2,pq2(Rn)空间的有界性. In this paper, the authors proved the boundedness of commutators [b,gφ,λ^*] generated by Littlewood-Paley operators gφ,λ^* and CMO(R^n) functions b from HKq1,b^α1,p(R^n)to Kq2^a2,p(R^n). And for the endpoint, the boundedness of commutators [b,gφ,λ^*] from HKq1,b^a1,p(R^n) to WKq2^a2,p(R^n) was also proved.
出处 《伊犁师范学院学报(自然科学版)》 2015年第1期1-8,共8页 Journal of Yili Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11261055) 新疆大学大学生创新项目训练(2014)
关键词 广义Littlewood-Paley算子 交换子 HERZ型HARDY空间 CMO(Rn) generalized Littlewood-Paley Operators commutators Herz type Hardy spaces CMO ( R^n)
  • 相关文献

参考文献5

二级参考文献30

  • 1Lu Shanzhen and Yang Dachun (Beijing Normal University, China).THE CENTRAL BMO SPACES AND LITTLEWOOD-PALEY OPERATORS[J].Analysis in Theory and Applications,1995,11(3):72-94. 被引量:50
  • 2李宏亮,沈钢.Hardy-Littlewood极大算子在弱型Lorentz空间上的有界性[J].浙江大学学报(理学版),2006,33(2):121-124. 被引量:4
  • 3林燕.粗糙核分数次积分交换子及多线性算子的CBMO估计[J].北京师范大学学报(自然科学版),2007,43(2):120-126. 被引量:8
  • 4Stein E M. Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton: Princeton University Press, 1993.
  • 5Grafakos L, Torres R. Multilinear Calderon-Zygmund theory, Adv Math, 2002, 165: 124-164.
  • 6Kenig C E, Stein E M. Multilinear estimates and fractional integration, Math Res Lett, 1999, 6: 1-15.
  • 7Lacey M, Thuele C. On Calderon's conjecture, Ann Math, 1999, 149: 475-496.
  • 8Tao X, Wang H. On the Neumann problem for the Schrodinger equations with singular potentials in Lipschitz domains, Canad J Math, 2004, 56(3): 655-672.
  • 9Shen Z. Boundary value problems in Morrey spaces for elliptic systems on Lipschitz domains, Amer J Math, 2003, 125: 1079-1115.
  • 10Herz C. Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transform, J Math Mech, 1968, 18: 283-324.

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部