期刊文献+

基于线性方程组右端向量修改的拓扑图同构判别 被引量:1

Isomorphism identification of topological graphs based on dynamic modification to right-hand vector term of linear equation systems
下载PDF
导出
摘要 为了提高拓扑图同构判别速度,借助邻接矩阵动态修改法的拓扑图同构判别思想,即利用素数对拓扑图顶点动态赋值以获得线性方程组解向量的改变,从而找到拓扑图同构的映射关系。为进一步减少计算量,简化判别过程,提出保持邻接矩阵不变,仅修改线性方程组右端向量以获得解向量的改变的方法,给出了该方法的初步理论依据。与邻接矩阵动态修改法相比,该方法无须重新形成邻接矩阵,在每次右端向量修改中省去了形成邻接矩阵的运算量,且判别算法变得更为简单。拓扑图同构判别实例表明,该方法有效、可靠。 A mapping between two topological graphs was established by varying the solution vector of linear equation systems to increase the velocity of isomorphism identification.The variation of solution vector results from a dynamic assignment of primers to vertex of topological graphs.This identification method is similar to the one in dynamic modification of adjacent matrix.The method results in various solution vectors by changing right-hand vector term of linear equation systems under unchanged adjacent matrix in order to simplify the isomorphism identification.Compared with the method of dynamic modification to adjacent matrix,this method reduces a calculation to generate a new adjacent matrix during the modification of right-hand vector term so that it simplifies the algorithm of isomorphism identification.More applied examples turn out that this improved method is effective and reliable.
作者 罗贤海
出处 《中国科技论文》 CAS 北大核心 2015年第5期608-612,共5页 China Sciencepaper
基金 江西省自然科学基金资助项目(2010GZC0087)
关键词 拓扑图 线性方程组 右端向量修改 同构判别 topological graph linear equation systems modifying right-hand vector term isomorphism identification
  • 相关文献

参考文献12

  • 1Ullmann J R. An algorithm for subgraph isomorphism[J]. Journal of the Association for Computing Machin- ery, 1976, 23(1): 31-42.
  • 2Ullmann J R. Bit-vector algorithms for binary con straint satisfaction and subgraph isomorphism [J]. Journal of Experimental Algorithmics, 2010, 15 (1) : 1- 64.
  • 3Schmidt D C, Druffel L E. A fast backtracking algo- rithm to test directed graphs for isomorphism using dis- tance matrices [J]. Journal of the Association for Com- puting Machinery, 1976, 23(3): 433-445.
  • 4Cordella L P, Foggia P, Sansone C, et al. Evaluating performance of the vf graph matching algorithm EC~// Proceedings of the 10th International Conference on Im age Annlysis and Processing. Venice: IEEE C~mputer Society Press, 1999: 1172-1177.
  • 5McKay B D. Practical graph isomorphism [J]. Congre- ssus Numerantium, 1981, 30: 45-87.
  • 6Foggia P, Sansone C, Vento M. A performance com- parison of five algorithms for graph isomorphism EC~// Proceeding Third IAPR TC-15 International Workshop Graph-Based Representations in Pattern Recognition. Italy, Pattern Recognition, 2001: 188-199.
  • 7Miyazaki T. The Complexity of McKay~ s canonical la- beling algorithm [C~//Groups and Computation II. Rhode Island, American, Transactions of The Ameri- can Mathematical Society, 1997:239 256.
  • 8万金保,董铸荣,沈守范.用邻接矩阵识别机构运动链同构的研究[J].机械工程学报,2004,40(7):85-88. 被引量:17
  • 9商慧亮,刘洋,柳志栋,董文杰,李锋.改进电路模拟法的应用——同构混合开关拓扑辨识[J].应用科学学报,2014,32(2):199-208. 被引量:1
  • 10罗贤海.机构运动链邻接矩阵的素数表示与同构判别[J].机械工程学报,2013,49(5):24-31. 被引量:16

二级参考文献57

  • 1庄坤森.运动链的规范化赋权拓扑胚图描述及同构判别[J].山东轻工业学院学报(自然科学版),2013,27(1):45-50. 被引量:3
  • 2万金保,董铸荣,沈守范.用邻接矩阵识别机构运动链同构的研究[J].机械工程学报,2004,40(7):85-88. 被引量:17
  • 3邹潇湘,戴琼.图同构中的一类顶点细分方法[J].软件学报,2007,18(2):213-219. 被引量:6
  • 4臧威,李锋.任意图的同构判定算法:特征向量法[J].计算机辅助设计与图形学学报,2007,19(2):163-167. 被引量:11
  • 5HardyGH,WrightEM.数论导引[M].张明尧,张凡,译.北京:人民邮电出版社,2008.
  • 6Uicker J J,Raicu A. A method for the identification and recognition of equivalence of kinematic chains. Mech. Mach. Theory,1975,10:375~383
  • 7Mruthyunjaya T S. In quest of a reliable and efficient computational test for detection of isomorphism in kinematic chains. Mech. Mech. Theory,1987,22(2):131~140
  • 8Rao A C ,Varada R D. Application of the Hamming number technique to detect isomorphism among kinematic chains and inversions. Mech. Mach. Theory,1991,26:55~75
  • 9Tuttle E R,Peterson S W,Titus J E. Further applications of group theory to the enumeration and structural analysis of basic kinematic chains. J. Mech. Trans. Auto. in Des.,ASME Trans.,1989,111:494~497
  • 10Chu J K,Cao W Q. Identification of isomorphism among kinematic chains and inversions using link's adjacent chain table. Mech. Mach. Theory,1994,29:53~58

共引文献29

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部