期刊文献+

Synthesis and characterization of Ce_(0.8)Sm_(0.2–x)Pr_xO_(2–δ)(x=0.02–0.08)solid electrolyte materials 被引量:3

Synthesis and characterization of Ce_(0.8)Sm_(0.2–x)Pr_xO_(2–δ)(x=0.02–0.08)solid electrolyte materials
原文传递
导出
摘要 Solid electrolytes C%sSmo.2 xPrxO2-δ (x=0.02, 0.04, 0.06, 0.08) were prepared by citric-nitrate method. The microstructure and electrical properties of such materials were examined by X-ray diffraction (XRD), atomic force microscopy (AFM), Raman spec- troscopy (Raman), X-ray photoelectron spectroscopy (XPS) and impedance spectroscopy analyses, Specifically, results from XRD analysis showed that samples calcined at 800 ℃ for 4 h possessed single-phase cubic fluorite structure, and the average grain size was found to be 36--45 nm. Further Raman spectral analysis indicated that oxygen vacancies should be present in the cubic fluorite struc- ture of Ce0.sSmo.laPr0.08Oe~, and Pr-doping seemed to increase their concentration significantly. AFM images showed that the grain size grew with the increase of Pr substitution. XPS analysis confirmed the existence of oxygen vacancies in the lattice of Ceo.sSmoA2Pro.osO2_~ in which Pr3+ and Pr4+ co-existed. AC impedance spectra indicated that the conductivity of Ceo.sSm0.2-xPrx02+ increased with the increase of Pr-doping but the conduction activation energy decreased. Notably, it appeared that sample Ceo.sSmo.12Pro.o802-x (aaoooc=l.21xlO-z S/cm, Ea=0.77 eV) exhibited conductivity superior to Ceo.sSmo.2Ol.9 (aro0.c=2.22×10-3 S/cm, Ea= 1.02 eV) because it possessed higher conductivity and lower activation energy. At 600 ℃, the conductivity of Ce0.sSrno.12Pr0.0802m was 4.45 times higher than that of the un-doped material. Solid electrolytes C%sSmo.2 xPrxO2-δ (x=0.02, 0.04, 0.06, 0.08) were prepared by citric-nitrate method. The microstructure and electrical properties of such materials were examined by X-ray diffraction (XRD), atomic force microscopy (AFM), Raman spec- troscopy (Raman), X-ray photoelectron spectroscopy (XPS) and impedance spectroscopy analyses, Specifically, results from XRD analysis showed that samples calcined at 800 ℃ for 4 h possessed single-phase cubic fluorite structure, and the average grain size was found to be 36--45 nm. Further Raman spectral analysis indicated that oxygen vacancies should be present in the cubic fluorite struc- ture of Ce0.sSmo.laPr0.08Oe~, and Pr-doping seemed to increase their concentration significantly. AFM images showed that the grain size grew with the increase of Pr substitution. XPS analysis confirmed the existence of oxygen vacancies in the lattice of Ceo.sSmoA2Pro.osO2_~ in which Pr3+ and Pr4+ co-existed. AC impedance spectra indicated that the conductivity of Ceo.sSm0.2-xPrx02+ increased with the increase of Pr-doping but the conduction activation energy decreased. Notably, it appeared that sample Ceo.sSmo.12Pro.o802-x (aaoooc=l.21xlO-z S/cm, Ea=0.77 eV) exhibited conductivity superior to Ceo.sSmo.2Ol.9 (aro0.c=2.22×10-3 S/cm, Ea= 1.02 eV) because it possessed higher conductivity and lower activation energy. At 600 ℃, the conductivity of Ce0.sSrno.12Pr0.0802m was 4.45 times higher than that of the un-doped material.
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2015年第4期411-416,共6页 稀土学报(英文版)
基金 Project supported by the National Natural Science Foundation of China(51272087) Science Research Foundation of Jilin Province(2014181)
关键词 Ce0.8Smo.2-xPrx02-δ oxygen vacancy Raman spectroscopy CONDUCTIVITY rare earths Ce0.8Smo.2-xPrx02-δ oxygen vacancy Raman spectroscopy conductivity rare earths
  • 相关文献

二级参考文献2

共引文献9

同被引文献19

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部