期刊文献+

Effect of annealing treatment on the anti-pulverization and anti-corrosion properties of La_(0.67)Mg_(0.33)Ni_(2.5)Co_(0.5) hydrogen storage alloy 被引量:4

Effect of annealing treatment on the anti-pulverization and anti-corrosion properties of La_(0.67)Mg_(0.33)Ni_(2.5)Co_(0.5) hydrogen storage alloy
原文传递
导出
摘要 The Lao.67Mg0.33Ni2.5Co0.5 hydrogen storage alloy was prepared by the vacuum intermediate frequency induction furnace followed by annealing treatment. The pulverization degree of both the as-cast and annealed alloy powders after gaseous hydriding and dehydriding cycle was investigated and the discovery was that annealing treatment could hardly ameliorate their anti-pulverization ability. The element content of La, Mg, Ni and Co existing in electrolyte before and after the electrochemical cycles by using ICP-AES technology was also analyzed and it showed that a large amount of La and Mg were dissolved in the electrolyte, but the amount of dissolution for La and Mg significantly declined when the alloy was annealed. The XRD analysis revealed that all the al- loys consisted of two main phases AB3 and AB2 and a residual phase AB5 while annealing treatment made the AB2 phase decrease slightly. Furthermore, the anti-corrosion abilities of various elements in different phases of the as-cast and annealed alloy samples were studied by analyzing the element (La, Mg, Ni, Co) change with the corrosion time in phases AB3 and AB2 by means of EDS. It turned out that the element of La was mainly corroded out from the phase AB2 while not easily from the phase AB3. However, the element of Mg was both easily corroded out from the phases AB2 and AB3, but the corrosion was more obvious in the phase AB3. Therefore, annealing improved the anti-corrosion performances of La and Mg in the phase AB2. The Lao.67Mg0.33Ni2.5Co0.5 hydrogen storage alloy was prepared by the vacuum intermediate frequency induction furnace followed by annealing treatment. The pulverization degree of both the as-cast and annealed alloy powders after gaseous hydriding and dehydriding cycle was investigated and the discovery was that annealing treatment could hardly ameliorate their anti-pulverization ability. The element content of La, Mg, Ni and Co existing in electrolyte before and after the electrochemical cycles by using ICP-AES technology was also analyzed and it showed that a large amount of La and Mg were dissolved in the electrolyte, but the amount of dissolution for La and Mg significantly declined when the alloy was annealed. The XRD analysis revealed that all the al- loys consisted of two main phases AB3 and AB2 and a residual phase AB5 while annealing treatment made the AB2 phase decrease slightly. Furthermore, the anti-corrosion abilities of various elements in different phases of the as-cast and annealed alloy samples were studied by analyzing the element (La, Mg, Ni, Co) change with the corrosion time in phases AB3 and AB2 by means of EDS. It turned out that the element of La was mainly corroded out from the phase AB2 while not easily from the phase AB3. However, the element of Mg was both easily corroded out from the phases AB2 and AB3, but the corrosion was more obvious in the phase AB3. Therefore, annealing improved the anti-corrosion performances of La and Mg in the phase AB2.
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2015年第4期417-424,共8页 稀土学报(英文版)
基金 Project supported by the National Key Laboratory of New Metal(Z2011-11) the National Natural Science Foundation of China(51471054)
关键词 hydrogen storage alloy La-Mg based metal hydride electrochemical performance cyclical stability rare earths hydrogen storage alloy La-Mg based metal hydride electrochemical performance cyclical stability rare earths
  • 相关文献

参考文献1

二级参考文献10

共引文献14

同被引文献7

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部