期刊文献+

基于表面增强拉曼光谱微流控芯片的研究进展 被引量:10

Advance in Microfluidic Chips Based on Surface Enhanced Raman Spectroscopy Technique
下载PDF
导出
摘要 微流控芯片实验室是一种以在微米尺度的空间中对流体进行操控为主要特征的技术,具有灵活集成多种单元技术,降低样品消耗量等优势。拉曼光谱是一项重要的现代光谱技术,被广泛应用于化学、物理和生物科学等诸多学科领域,基于纳米银或金粒子的表面增强拉曼(SERS)技术具有非常高的灵敏度,可对环境中的污染物和生物分析样品进行痕量分析。该文主要对表面增强拉曼光谱微流控芯片领域的研究进展进行总结,包括纳米粒子合成、芯片设计以及常见的传感器类型,介绍了其在生命科学、环境监测等领域的应用,显示了其广阔的应用前景。 Microfluidic chip is a kind of technology manipulating fluids in micrometer scale with ad- vantages of flexible integration of variety of cell technology, reducing sample consumption and etc. Raman spectroscopy is an important spectroscopic technique used widely in the fields of chemical, physical and biological sciences, and many other disciplines. Moreover, based on the surface of sil- ver or gold nanopartieles, the enhanced Raman(SERS) technique has very high sensitivity that could be easily used for monitoring environmental pollutants and biological analysis of samples. This paper mainly summarizes the research progress of microfluidic chip in the field of surface-enhanced Raman spectra, including nanoparticle synthesis, chip design and common sensor types, and introduces its applications in life sciences and environmental monitoring, which reveals its broad application prospects.
出处 《分析测试学报》 CAS CSCD 北大核心 2015年第3期302-307,共6页 Journal of Instrumental Analysis
基金 国家自然科学基金资助项目(21275158 21205131) 中国科学院重要方向性项目(KZCX2-EW-206)
关键词 微流控芯片 芯片实验室 表面增强拉曼 环境污染物 生物分析 综述 microfluidic chip lab on a chip surface-enhanced Raman environmental pollutent bioanalytical analysis review
  • 相关文献

参考文献65

  • 1Nie S M , Emery S R. Science , 1997 , 275(5303) : 1102 - 1106.
  • 2Lim C, Hong J, Chung B G, de Mello A J, Choo J. Analyst, 2010,135(5) : 837 -844.
  • 3Chen L, Choo J. Electrophoresis,2008, 29(9) ; 1815 - 1828.
  • 4Li Q L, Li B W, Wang Y Q. RSC Adv.,2013,3(32) : 13015-13026.
  • 5Aroca H F,Alvarez - Puebla R A, Pieczonka N, Sanchez - Cortez S, Garcia - Ramos J V. Adv. Colloid Interface Sci.,2005,116; 45 -61,.
  • 6Leopold N, Lendl B. J. Phys. Chem. B, 2003; 107(24) : 5723 -5727.
  • 7Doty R C , Tshikhudo T H, Brust M, Femig D G. Chem. Mater. , 2005, 17(18) : 4630 -4635.
  • 8Kneipp J , Kneipp H, Kneipp K P. Natl. Acad. Sci. USA, 2006,103(46) : 17149 - 17153.
  • 9Liu R H, Stremler M A , Sharp K V, Olsen M G,Santiago JG, Adrian R J, Aref H, Beebe D J. J. Microelectromech. Syst.,2000 , 9(2) : 190 -197.
  • 10Nguyen N T, Wu Z G. J. Micromech. Microeng.,2005,15(2) ; R1 - R16.

二级参考文献100

  • 1毛向明,马文丽,冯春琼,宋艳斌,石嵘,徐秋林,邹亚光,姜立,郑文岭.应用微流路芯片高压凝胶电泳检测精子RNA[J].解剖学报,2005,36(3):326-329. 被引量:3
  • 2Leclerc E S Y, Fujii T. Biomed Microdevices, 2003, 5 (2) : 109.
  • 3Zhang M Y, Lee P J, Hung P J, et al. Biomed Microdevices, 2008, 10: 117.
  • 4Khademhosseini A, Yeh J, Eng G, et al. Lab Chip, 2005, 5(12): 1 380.
  • 5Nevill J T, Cooper R, Dueck M, et at. Lab Chip, 2007, 7 (12): 1689.
  • 6Yang M S, Li C W, Yang J. Anal Chem, 2002, 74(16): 3 991.
  • 7Liu X, Wang Q, Qin J, et al. Lab Chip, 2009, 9(9): 1200.
  • 8Tiren J, Tenerz L, Hok B. Sens Actuators, 1989, 18(3/4) : 396.
  • 9Koh C G, Tan W, Zhao M Q, et al. Anal Chem, 2003, 75 (17): 4591.
  • 10Unger M A, Chou H P, Thorsen T, et al. Science, 2000. 288(5463):113.

共引文献30

同被引文献104

引证文献10

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部