期刊文献+

复杂光照下的视频人脸检测与识别研究 被引量:2

Study of Video Face Detection and Recognition under Complex Illumination
下载PDF
导出
摘要 为了解决复杂光照下的视频人脸检测与识别率受影响的问题,提出了一种光照不变的人脸检测与识别方法。该方法基于Retinex理论,提取光照不变分量,然后用于训练AdaBoost分类器;对输入的视频序列也进行相同的光照预处理,然后用训练的AdaBoost分类器进行人脸检测;把检测到的光照不变人脸图像采用分块加权LBP进行特征提取,采用欧氏距离与最近邻分类器进行分类。实验结果表明:该方法能有效提高视频人脸检测率与人脸识别率,而且对于人脸检测与识别只需要一次光照处理,具有更高的效率。 In order to solve video face detection and recognition rate affected by the problem of complex light, an illumination invariant method of face detection and recognition is proposed in this paper. The method is based on the Retinex theory. Firstly, the illumination in- variant component is extracted from input image. Then it's used to train the AdaBoost classifier. Illumination invariant component is also extracted from input video sequence to detect face by using the trained AdaBoost classifier. Block weighted LBP algorithm is used to ex- tract illumination invariant face feature. Euclidean distance and the nearest neighbor classifier are used to classify the feature vectors. The experimental results show that the method can effectively increase the rate of video face detection and face recognition, and it only needs an illumination pretreatment for video face detection and recognition. Therefore, it has higher efficiency.
出处 《电视技术》 北大核心 2015年第7期91-95,共5页 Video Engineering
基金 国家"863"计划项目(2012AA03A301 2013AA030601) 国家自然科学基金项目(61101169 61106053) 福建省2014年省属高校科研课题JK类重点项目
关键词 人脸检测 人脸识别 LBP RETINEX理论 ADABOOST算法 face detection face recognition LBP Retincx AdaBoost
  • 相关文献

参考文献11

  • 1GALTON F. Personal identification and description [ J ]. The Journal of the Anthropological Institute of Great Britain and Ireland, 1889 (18) :177-191.
  • 2PHILLIPS P J, GROTHER P, MICHEALS R,et al. FRVT2006 and ICE 2006 large-scale results[ EB/OL]. [ 2014--08-10 ]. http ://wen- ku. baidu, com/link? url = LeWDYN60C - VjLjyKorMJKPSoyLm8 - pQYDcl lpDTumuzqwGYuurpwMxA7 NCurgFSgKGpqxtknGOezONa_ HFJ9rqnMgbDKrhvkLpkehpVXH9i National Institute of Standards and Technology, NISTIR, 2007, 7408.
  • 3章毓晋.图像工程:上册--图像处理[M].北京:清华大学出版社,2006.
  • 4李锦,王俊平,万国挺,李紫阳,许丹,曹洪花,张广燕.一种结合直方图均衡化和MSRCR的图像增强新算法[J].西安电子科技大学学报,2014,41(3):103-109. 被引量:48
  • 5施水才,杨忱,王涛,吕学强.基于自商图像的人脸图像增强[J].计算机工程与应用,2013,49(13):142-144. 被引量:3
  • 6凌敏.基于Retinex理论的图像增强算法研究[J].计算机光盘软件与应用,2014,17(1):137-137. 被引量:2
  • 7LAND E. An alternative technique for the computation of the desig- nator in the Retinex theory of color vision [ EB/OL ]. [ 2014-08- 10 ]. http ://www. pnas. org/content/83/10/3078.
  • 8VIOLA P, JONES M. Rapid object detection using a boosted cas- cade of simple features [ C ]//Proc. the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. [ S. I. ] : IEEE Press,2001:511-518.
  • 9黄华盛.基于Haar特征的人脸识别算法[J].计算机光盘软件与应用,2013,16(23):88-88. 被引量:2
  • 10OJALA T, PIERIKAINEN M, HARWOOD D. A comparative study of texture measures with classification based on feature distributions [J]. Pattern Recognition, 1996, 29( 1 ) : 1-59.

二级参考文献26

  • 1Riklin-Raviv T, Shashua A.The quotient image: class-based re-rendering and recognition with varying illumination COIl?ditions[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2001 ,23(2): 129-139.
  • 2Shashua A.On photometric issues in 3D visual recognition from a single 20 image[J].lnternational Journal of Computer Vision, 1997,21 (112).
  • 3Georghiades AS, Belhumeur P N, Kriegman 0 J.From few to many: illumination cone models for face recognition under variable lighting and pose[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001 ,23(6) :643-660.
  • 4Ramamoorthi R, Hanrahan P.On the relationship between radiance and irradiance: determining the illumination for images. of a convex Lambertian object[J].Journal of the Optical Society of America,2001, 18( 10).
  • 5Well Z. Li U Z, Huang T.Face relighting with radiance envi?ronment maps[C]IIProceedings of International Conference on Computer Vision and Pattern Recognition, 2003,2: 158-165.
  • 6Wang H, Li S, Wang Y.Face recognition under varying lighting conditions using self quotient image[C]IIProceedings of tbe 6th IEEE International Conference on Automatic Face and Gesture Recognition, 2004: 819-824.
  • 7Land E, McCann J.Lightness and retinex theory[J].Journal of the Optical Society of America, 1971 ,61 ( I ) : I-II.
  • 8Leu J G.Edge sharpening througb ramp width reduction[J].Lmage and Vision Computing, 2000, 18( 617): 51 0-514.
  • 9Luo J ,Oubong G.A comparison of SIFT, PCA-SLFT and SURF[J]. International Journal of Image Processing, 2009, 3(4) : 143-152.
  • 10Wang Jirdaua, Bi Haijiang. Retinex-based Color Correction for Displaying High Dynamic .Range Images [C]//Ineternational Confemece on Signal Processing Proceedings. Piscataway: IEEE, 2010: 1021-1024.

共引文献51

同被引文献22

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部