期刊文献+

基于HOG+SVM模型的场景文字二次检测算法 被引量:3

Scene Text Secondary Location Algorithm Based on HOG+SVM Mode
下载PDF
导出
摘要 针对基于边缘检测的文字定位虚警率过高的问题,提出了一种基于Canny边缘检测和HOG+SVM模型相结合的场景文字检测算法。首先采用基于Canny边缘检测和文字的几何约束条件得到候选文字区域,再利用HOG+SVM模型对候选文字区域进行二次检测,过滤掉大部分非文字区域。实验结果表明,该算法能够有效地去除基于边缘检测算法产生的误检区域,大大降低了基于边缘检测的场景文字定位的虚警率,并对背景复杂的图像也具有一定的鲁棒性。 To reduce the false alarm rate in the scene text location algorithm based on edge detection, a scene text detection meth- od based on the combination of Canny edge detection and HOG + SVM mode is proposed. Firstly, the candidate text regions are ex- tracted by the combination of Canny edge detection and the word' s Geometric constraints. Secondly, most of the non - word candi- date text regions are deleted by HOG + SVM mode. Experimental results show that the proposed method can filter out the false de- tected regions, whereas the false alarm rate based on the edge detection is reduced greatly. In addition, the proposed method can also deal with the complex scene images well.
出处 《电视技术》 北大核心 2015年第7期118-121,共4页 Video Engineering
基金 国家自然科学基金委员会和中国工程物理研究院联合基金项目(11176018)
关键词 自然场景 文字检测 CANNY边缘检测 HOG+ SVM模型 二次检测 natural scene text detection Canny edge detection HOG + SVM mode secondary detection
  • 相关文献

参考文献17

  • 1DOERMANN D, LIANG Jian, LI Huiping. Progress in camera - based document image analysis[ C]//Proc. ICDAR. [ S. 1. ] :IEEE Press,2003:606 - 616.
  • 2YI C ,TIAN Y. Text string detection from natural scenes by structure. - based partition and grouping[J]. IEEE Trans. Image Processing,2011,20(9) :2594 -2605.
  • 3刘勇,孙焘,李琛,冯林.自然场景下标志牌文本的提取[J].现代电子技术,2007,30(23):112-114. 被引量:1
  • 4GARG R,HASSAN E,CHAUDHURY S. A CRF based scheme for overlapping muhi - colored text graphics separation [ C ]//Proc. IC- DAR. [S. 1.]:IEEEPress,2011:1215-1219.
  • 5PAN Y F, HOU X W,LIU C L. A Hybrid approach to detect and localize texts in natural scene images[ J ]. IEEE Trans. Image Pro- cessing,2011,20( 3 ) :800 - 813.
  • 6YAO Cong, BAI Xiang, SHI Baoguang. Strokelets : a learned multi - scale representation for scene text recognition [ C ]//Proc. CVPR. [ S. 1. ] : IEEE Press ,2014 : 1 - 9.
  • 7WANG Kai,BABENKO B, BELONGIE S. End - to - end scene text recognition[C]//Proc. ICCV. [S. 1.]: IEEE Press, 2011: 1457 - 1464.
  • 8COMANICIU D, MEER P. Mean shift: a robust approach toward feature space analysis[ J]. IEEE Trans. Pattern Analysis and Ma- chine Intelligence, 2002,24 ( 5 ) : 603 - 619.
  • 9陈世文,刘越畅.一种基于最小交叉熵的Canny边缘检测算法[J].电视技术,2013,37(1):165-168. 被引量:12
  • 10HUANG Hailong, WANG Hong, GUO Fan. A Gray- scale image edge detection algorithm based on mathematical morphology [ C ]// Proc. ICMTMA. [ S. 1. ] :IEEE Press,2011:62 -65.

二级参考文献21

  • 1柴俊华,应骏.基于Canny算子的图像轮廓提取的改进方法[J].电视技术,2008,32(z1):48-50. 被引量:5
  • 2张引.基于空间分布的最大类间方差牌照图像二值化算法[J].浙江大学学报(工学版),2001,35(2):219-219. 被引量:39
  • 3张斌,贺赛先.基于Canny算子的边缘提取改善方法[J].红外技术,2006,28(3):165-169. 被引量:53
  • 4X Peng, S Seflur, V Govindaraju, R Sitaram, K Bhuvanagiri. Markov Random Field Based Text Identification from Annotated Machine Printed Documents[ C]. International Conference of Doe- ument Analysis and Recognition, 2009. 431 -435.
  • 5N Otsu. A threshold selection method from gray level histograms [ J]. IEEE Trans. Systems, Man and Cybernetics, 1979,9 : 62 - 66.
  • 6M Valizadeh, N Armanfard, M Komeili and E Kabir. A novel hy- brid algorithm for binarization of badly illuminated document ima- ges[ C]. Proc. IEEE 14th International CSI Computer Conference, 2009. 121 - 126.
  • 7W Niblack. An Introduction to digital image processing [ M ]. Prentice Hall, 1986.
  • 8J Sauvola, M Pietikainen. Adaptive document image binarization [J]. Pattern Recognition. 2000,33:225 -236.
  • 9S S Bukhari, F Shafait and T Breuel. M. Adaptive binarization of unconstrained hand - held camera - captured document images [ J ]. Journal of Universal Computer Science, 2009,15 ( 18 ) :3343 - 3363.
  • 10陈兵旗,孙明.Visual C^++使用图像处理[M].北京:清华大学出版社,2004.

共引文献18

同被引文献17

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部