期刊文献+

拟弧长延拓法在静电激励MEMS吸合特性研究中的应用 被引量:2

Application of the Pseudo-Arclength Continuation Algorithm to Investigate the Size-Dependent Pull-in Instability of the Electrostatically Actuated MEMS
下载PDF
导出
摘要 在静电激励微机电系统MEMS(micro-electro-mechanical systems)吸合特性研究中,基于应变梯度理论的微梁结构的控制方程是非线性高阶微分方程,给方程的求解带来了困难.由于该问题的数学模型本质上是分叉问题,方程的解支上出现奇异点,而运用局部延拓法无法通过奇异点.因此,通过运用广义微分求积法将控制方程降阶离散,结合拟弧长延拓法使迭代顺利通过奇异点,求出了整个解曲线.结果表明,拟弧长延拓法能有效并准确地求解具有分叉现象的高阶微分方程问题,为精确预测静电激励MEMS的吸合电压提供有力帮助. In the study of the electrostatically actuated MEMS (micro-electro-mechanical sys- tems), based on the strain gradient elasticity theory, the governing equations for the microbeam are nonlinear differential equations that are difficult to solve. The mathematical model for this problem is of essential bifurcation, and the solution branches of the equations have in- flection points. The iteration process can' t go through the inflection points with the local con- tinuation method. Therefore, the generalized differential quadrature method was applied to dis- cretize and reduce the order of the governing equations, and the pseudo-arclength continuation algorithm was used to enable the iteration process to go smoothly through the inflection points, with the complete solution curve calculated. The numerical results show that the pseudo-arc- length continuation algorithm makes an effective way precisely solving the nonlinear high-order differential equations with bifurcation phenomenon embedded, and helps to accurately predict the pull-in voltage of the electrostatically actuated MEMS.
出处 《应用数学和力学》 CSCD 北大核心 2015年第4期386-392,共7页 Applied Mathematics and Mechanics
基金 国家自然基金(11202117 11272186) 山东省自然基金(ZR2012AM014 BS2012ZZ006)~~
关键词 MEMS 吸合特性 奇异点 拟弧长延拓法 MEMS pull-in instability inflection point pseudo-arclength continuation algorithm
  • 相关文献

参考文献1

二级参考文献31

  • 1Goeders K M, Colton J S, Bottomley L A. Microcantilevers: sensing chemical interactions via mechanical motion [ J ]. Chemical Reviews, 2008, 108 (2) : 522-542.
  • 2Alvarez M, Lechuga L M. Microcantilever-based platforms as biosensing tools [J]. Analyst, 2010, 135(5): 827-835.
  • 3Eom K, Park H S, Yoon D S, Kwon T. Nanomechanical resonators and their applications in biological/chemical detection: nanomechanics principles [ J ]. Physics Reports, 2011, 503 (4/ 5) : 115-163.
  • 4Hagan M F, Majumdar A, Chakraborty A K. Nanomechanical forces generated by surface grafted DNAIJ]. The Journal of Physical Chemistry B, 2002, 106(39) : 10163-10173.
  • 5Dareing D W, Thundat T. Simulation of adsorption-induced stress of a microcantilever sensor [J]. Journal of Applied Physics, 2005, 97(4): 043525-1-043526-5.
  • 6Eom K, Kwon T Y, Yoon D S, Lee H L, Kim T S. Dynamical response of nanomechanical re- sonators to biomolecular interactions [ J] Physical Review B, 2007, 76 ( ll ) : 113408-1- 113408-4.
  • 7Huang G Y, Gao W, Yu S W. Model for the adsorption-induced change in resonance frequen- cy of a cantilever[J]. Applied Physics Letters, 2005, 89(4) : 043505-1-043505-4.
  • 8Zang J, Liu F. Theory of bending of Si nanocantilevers induced by molecular adsorption: a modified Stoney formula for the calibration of nanomechanochemical sensors [J] Nanotech- nology, 2007, 18(40) : 405501-1-405501-4.
  • 9Zang J, Liu F. Modified Timoshenko formula for bending of ultrathin strained bilayer films [J]. Applied Physics Letters, 2008, 92(2): 021905-1-021905-3.
  • 10Zhang J Q, Yu S W, Feng X Q, Wang G F. Theoretical analysis of adsorption-induced micro- cantilever bending[J]. Journal of Applied Physics, 2008, 103(9) : 093506-1-093506-6.

共引文献5

同被引文献9

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部