期刊文献+

基于改进UKF的滚动时域估计方法及其在PVC聚合过程中的应用 被引量:2

An improved UKF-based moving horizon estimation strategy and its application for a poly(vinyl chloride) polymerization process
原文传递
导出
摘要 聚合过程具有高度非线性和时变性等特点,参数在线估计有助于聚合过程控制性能和优化效果的改善。滚动时域估计(MHE)方法是一种用于聚合过程参数和状态估计的有效方法。本文提出了一种基于改进无迹卡尔曼滤波(UKF)的滚动时域估计方法,用于氯乙烯聚合过程机理模型时变参数的估计。滚动时域估计方法的关键问题之一是抵达成本(Arroval Cost)的近似估算,文中采用2种采样策略来实现抵达成本的自适应计算和更新。将提出的方法应用于氯乙烯聚合过程传热系数的在线估计,并与传统的滚动时域估计方法相比较,体现了该方法的有效性。 Online parameter estimation is helpful to enhance the control performance and operation optimization of polymerization processes, which are characterized by its highly nonlinearity and time-varying parameters. A moving horizon estimation (MHE) strategy is a more efficient manner for parameter and state estimation, especially for polymerization processes. In this paper, an MHE strategy based on improved unscented Kalman filter (UKF) is proposed to estimate time varying parameters in a mechanism model of a poly (vinyl chloride) polymerization process. Approximation of the arrival cost in MHE formulation is a critical issue in this domain. Two sampling strategies is used and switched adaptively to eompute accurately and update the arrival cost parameters. The proposed method is illustrated and compared with the traditional MHE approach for the online parameter estimation of heat transfer coefficient for the poly (vinyl chloride) polymerization process.
出处 《计算机与应用化学》 CAS 2015年第3期298-302,共5页 Computers and Applied Chemistry
基金 浙江省自然科学基金项目(LY13BO60005) 浙江省教育厅科研项目(Y201121651) 工业控制技术国家重点实验室开放课题资助(ICT1226)
关键词 滚动时域估计 参数在线估计 无迹卡尔曼滤波 抵达成本 聚氯乙烯 moving horizon estimation online parameter estimation unscented Kalman filter arrival cost PVC
  • 相关文献

参考文献2

二级参考文献17

  • 1Rao C V, Rawlings J B and Lee J H. Constrained linear state estimation-a moving horizon approach. Automatica, 2001, 37(10): 1619-1628.
  • 2Zavala V M and Biegler L T. Optimization-based strategies for the operation of low-density polyethylene tubular reactors: Moving horizon estimation. Computers & Chemical Engineering, 2009, 33(1):379-390.
  • 3Hedengren J D, Allsford K V and Ramlal J. Moving horizon estimation and control for an industrial gas phase polymerization reactor. American Control Conference, 2007, 1353-1358.
  • 4Robertson D G, Lee J H and Rawlings J B. A moving horizon-based approach for least-squares estimation. AlChE Journal, 1996, 42(8):2209-2224.
  • 5Ungarala S. Computing arrival cost parameters in moving horizon estimation using sampling based filters. Journal of Process Control, 2009, 19(9):1576-1588.
  • 6Qu C C and Hahn J. Computation of arrival cost for moving horizon estimation via unscented kalman filtering. Journal of Process Control, 2009, 19(2):358-363.
  • 7Muske K R, Rawlings J B and Lee J H. Receding horizon recursive state estimation. American Control Conference, 1993:900-904.
  • 8Tenny M J and Rawlings J B. Efficient moving horizon estimation and nonlinear model predictive control. American Control Conference, 2002, 4475-4480.
  • 9Lee J H and Ricker N L. Extended kalman filter based nonlinear model predictive control. Industrial & Engineering Chemistry Research, 1994,33(6):1530-1541.
  • 10Boutayeb M, Rafaralahy H and Darouach M. Convergence analysis of the extended kalman filter as an observer for nonlinear discrete-time systems. Proceedings of the 34th IEEE Conference on Decision and Control, 1995:1555-1560.

共引文献4

同被引文献18

引证文献2

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部