期刊文献+

鞭毛素蛋白FliCxcv对水稻免疫反应的诱导功能鉴定

The Xanthomonas campestris pv.vesicatoria flagellin FliCxcv functions as a PAMP to trigger immunity responses in rice leaves
原文传递
导出
摘要 为揭示来源于番茄细菌性斑点病菌(Xanthomonas campestris pv.vesicatoria,Xcv)菌株XV18鞭毛素(FliCxcv)作为一种病原相关分子模式(PAMP)诱导水稻免疫反应的功能,本研究对FliCxcv编码基因flicxcv进行了基因克隆、序列分析、原核表达、蛋白纯化和诱导活性测定。结果表明,通过PCR特异性扩增,从Xcv菌株XV18中克隆了1 200bp的fliCxcv基因片段,其序列与GenBank中己测序菌株的完全一致。在大肠杆菌中对该基因全长、N端和C端截短序列进行了原核表达,并获得了纯化的FliCxcv全长及其截短蛋白。将纯化蛋白浸润接种到水稻品种日本晴叶片组织,发现FliCxcv全长及其截短蛋白均能诱导水稻叶片细胞死亡、H2O2产生以及防卫基因(OsPAL和OsPR1b)表达等免疫反应,但诱导活性存在差异。因此,本研究验证了FliCxcv具有激发水稻细胞免疫反应的PAMP功能,为水稻免疫诱导制剂的研发提供了材料。 To elucidate whether the flagellin (FliCxcv) from Xanthomonas campestris pv. vesicatoria (Xcv) act as a PAMP to induce PTI (PAMP-triggered-immunity) in rice, the gene cloning, sequence analysis, prokaryotic expression, protein purification and PAMP activity assay of FliCxcv and truncated proteins were performed in this study. The results show that the fliCxcv gene was cloned through PCR specific amplication from the genomic DNA of Xcv strain XV18, the sequence of which is identical to that of the sequenced strain in the GenBank. Moreover, the full-length, N- and C-terminal domains were expressed in Escherichia coli respectively and purified to get FliCxcv and truncated proteins FliCxcv-N and FliCxcv-C. The immunity responses including hypersensitive cell death, H2O2production and expression of defense-related genes, such as OsPAL and OsPRlb were observed in rice leave tissues infiltrated by these purified proteins. These results suggested that Xcv flagellin was an effective PAMP to elicit PTI in rice, which can be used for the development of novel inducing agent of rice disease resistance.
出处 《植物病理学报》 CAS CSCD 北大核心 2015年第2期151-157,共7页 Acta Phytopathologica Sinica
基金 国家“863”计划项目(2012AA101504) 国家“973”计划项目(2011CB100700)
关键词 番茄细菌性斑点病菌 鞭毛素 病原相关分子模式 水稻 免疫反应 Xanthomonas campestris pv. vesicatoria flagellin PAMPs rice immunity response
  • 相关文献

参考文献22

  • 1Takken F L W,Tameling W I L.To nibble at plant resistance proteins[J].Science,2009,324(5928):744-746.
  • 2Jones J D G,Dangl J L.The plant immune system[J].Nature,2006,444(7117):323-329.
  • 3Postel S,Kemmerling B.Plant systems for recognition of pathogen-associated molecular patterns[J].Seminars in Cell and Developmental Biology,2009,20(9):1025-1031.
  • 4Newman M A,Sundelin T,Nielsen J T,et al.MAMP(microbe-associated molecular pattern) triggered immunity in plants[J].Front Plant Sci.,2013,14:139.
  • 5Furukawa T,Inagaki H,Takai R,et al.Two distinct EF-Tu epitopes induce immune responses in rice and Arabidopsis[J].Mol.Plant-Microbe Interact.,2014,27(2):113-124.
  • 6Liu B,Li J F,Ao Y,et al.Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity[J].Plant Cell,2012,24(8):3406-3419.
  • 7Sun Y,Li L,Macho A P,et al.Structural basis for flg22-Induced activation of the Arabidopsis FLS2-BAK1 immune complex[J].Science,2013,342(6158):624-628.
  • 8Beatson S A,Minamino T,Pallen M J.Variation in bacterial flagellins:from sequence to structure[J].Trends Microbiol.,2006,14:151-155.
  • 9Takeuchi K,Taguchi F,Inagaki Y,et al.Flagellin glycosylation island in Pseudomonas syringae pv.glycinea and its role in host specificity[J].Bacteriol.,2003,185:6658-6665.
  • 10Gomez-Gomez L,Boller T.FLS2:an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis[J].Mol.Cell,2000,5:1003-1011.

二级参考文献23

  • 1[3]Wendehenne D,Pugin A,Klessig D F,Durner J.Nitric oxide:comparative synthesis and signaling in animal and plant cells.Trends in Plant Science,2001,6:177-183.
  • 2[4]Mur L A J,Carver T L W,Elena P.NO way to live:the various roles of nitric oxide in plant-pathogen interactions.Journal of Experimental Botany,2005,57:489-505.
  • 3[5]Wendehenne D,Durner J,Klessig D F.Nitric oxide:a new player in plant signaling and defence responses.Current Opinion in Plant Biology,2004,7:449-455.
  • 4[6]Delledonne M.NO news is good news for plants.Current Opinion in Plant Biology,2005,8:390-396.
  • 5[7]Zeier J,Delledonne M,Mishina T,Severi E,Sonoda M,Lamb C.Genetic elucidation of nitric oxide signaling in incompatible plant-pathogen interactions.Plant Physiology,2004,136:2875-2886.
  • 6[8]Romero-Puertas M C,Perazzolli M,Zago E D,Delledonne M.Nitric oxide signaling functions in plant-pathogen interactions.Cellular Microbiology,2004,6:795-803.
  • 7[9]Clarke A,Desikan R,Hurst R D,Hancock J T,Neill S J.NO way back:nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures.Plant Journal,2000,4:667-677.
  • 8[10]Delledonne M,Zeier J,Marocco A,Lamb C.Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response.Proceedings of the National Academy of Sciences of USA,2001,98:13454-13459.
  • 9[11]Lamotte O,Gould K,Lecourieux D,Sequeira-Legrand A,Lebrun-Garcia A,Durner J,Pugin A,Wendehenne D.Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein.Plant Physiology,2004,135:516-529.
  • 10[12]Yamamoto A,Katou S,Yoshioka H,Doke N,Kawakita K.Involvement of nitric oxide generation in hypersensitive cell death induced by elicitin in tobacco cell suspension culture.Journal of General Plant Pathology,2004,70:85-92.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部