期刊文献+

基于数据挖掘方法的皮肤病诊断建模

Building Diagnostic Model for Dermatology Disease by Using Data Mining Methods
下载PDF
导出
摘要 临床特征和组织病理学特征在皮肤科疾病分类问题中起着非常关键的作用。本文的主要目的是使用这些特征建立皮肤科疾病分类模型。本文首先使用最大相关最小冗余方法选择相关特征,然后使用支持向量机构造分类模型。文中所使用的数据集包含358皮肤病患者病例样本和35属性。通过实验比较使用特征选择方法前后的模型分类精度可知,使用特征选择方法能明显提升模型分类性能。同时,本文通过实验研究对不同年龄段的皮肤科疾病患者分类的差异性,并选择出了对于35岁以下皮肤科疾病患者分类重要的13个特征以及35岁以上患者分类重要的9个特征。 The clinical features and histopathological features play a key role in the performance of the dermatology classification problem. The primary aim in this work is building a dermatology classification model by using these features. In this paper, a well-known feature selection method, maximum relevance minimum redundancy (mRMR), is used to select relevant features. Then, support vector machine (SVM), a popular classifier is applied in the classification model. The data set used in this work contains 358 cases and 35 attributions including 34 features and 1 class. The experiment results demonstrate that the accuracy of classification model is improved obviously through feature selection. At the same time, 13 and 9 optimal features are selected from the data with patients aged under 35 and over 35 respectively. These features are regarded as the most significant features to classify the skin diseases for patients at different stages of age.
作者 邵峰峰
出处 《科技视界》 2015年第12期280-282,共3页 Science & Technology Vision
关键词 皮肤病 分类模型 特征选择 最大相关最小冗余 支持向量机 Dermatology Classification model Feature selection mRMR Support vector machine
  • 相关文献

参考文献9

  • 1Dlova N C,Mankahla A,Madala N,et al.The spectrum of skin diseases in a black population in Durban,Kwa Zulu‐Natal,South Africa[J].International journal of dermatology,2014.
  • 2譈beyli E D,Do gˇdu E.Automatic detection of erythemato-squamous diseases using k-means clustering[J].Journal of medical systems,2010,34(2):179-184.
  • 3Badrinath N,Gopinath G.A Survey on Utilization of the Machine Learning Algorithms for the Prediction of Erythemato Squamous Diseases[J].World Applied Sciences Journal,2014,29(6):752-757.
  • 4Guyon I,Elisseeff A.An introduction to variable and feature selection[J].The Journal of Machine Learning Research,2003,3:1157-1182.
  • 5Blum A L,Langley P.Selection of relevant features and examples in machine learning[J].Artificial intelligence,1997,97(1):245-271.
  • 6Christin C,Hoefsloot H C J,Smilde A K,et al.A critical assessment of feature selection methods for biomarker discovery in clinical proteomics[J].Molecular&Cellular Proteomics,2013,12(1):263-276.
  • 7王娟,慈林林,姚康泽.特征选择方法综述[J].计算机工程与科学,2005,27(12):68-71. 被引量:64
  • 8Peng H,Long F,Ding C.Feature selection based on mutual information criteria of max-dependency,max-relevance,and min-redundancy[J].Pattern Analysis and Machine Intelli-gence,IEEE Transactions on,2005,27(8):1226-1238.
  • 9Cortes C,Vapnik V.Support vector machine[J].Machine learning,1995,20(3):273-297.

二级参考文献27

  • 1钱忠良,王文军.不变矩目标特征描述误差分析和基于上层建筑不变矩的舰船识别[J].电子测量与仪器学报,1994,8(3):23-31. 被引量:4
  • 2H Liu,R Setiono. A Probabilistic Approach to Feature Selection: A filter Solution [A]. Proc of Int' 1 Conf on Machine Learning[C]. 1995. 319-327.
  • 3B Chakraboriy. Genetic Algorithm with Fuzzy Fitness Function for Feature Selection[A]. Proc of the 2002 IEEE International Symp on Industrial Electronics. Vol 1[C]. 2002. 315 - 319.
  • 4Jos Bins,Bruce A Draper. Feature Selection from Huge Feature Sets[A]. Proc of the 8th IEEE Conf on Computer Vision and Pattern Recognition. Vol 2[C]. 2001. 159-165.
  • 5Sanmay Das. Filters,Wrappers and a Boosting Based Hybrid for Feature Selection[A]. Proc of the 8th Int'l Conf on Machine Lemrning[C]. 2001.74-81.
  • 6Huang Yuan, Shian-Shyong Tseng, Wu Gangshan, et al. A Two-Phase Feature Selection Method Using Both Filter and Wrapper[A]. Proc of 1999 IEEE Inter'l Conf on Systems,Man, and Cybernetics. Vol 2[C]. 1999. 132 - 136.
  • 7R Kohavi,G H John. Wrappers for Feature Subset Selection[J]. Artificial Intelligence Journal, 1997,97(1-2) : 273-324.
  • 8Solberg A H S,Jain A K. Texture Fusion and Feature Selection Applied to SAR Imagery[J], IEEE Trans on Geoscience and Remote Sensing, 1997,35(2) : 475-479.
  • 9Sylvie Le Hegarat-Mascle, Isabelle Bloch,et al. Application of Dempster-Shafer Evidence Theory to Unsupervised Classification in Multi-Source Remote Sensing[J]. IEEE Trans on Geoscience and Remote Sensing, 1997,35(4): 1018-1031.
  • 10Kari Torkkola, Nonlinear Feature Transforms Using Maximum Mutual Information[A], Proc IJCNN[C]. 2001. 2756-2761.

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部