期刊文献+

低清晰视频的“白化-稀疏特征”车型分类算法 被引量:3

The“whitening-sparse coding”vehicle classification algorithm for low resolution video
下载PDF
导出
摘要 车型识别分类,对低/高速行车道划分、流量统计,特别是超长/重、危险品车的识别具有现实意义.实验室曾提出的基于尺度不变特征转换SIFT、方向梯度直方图HoG视频检测方法抗干扰能力弱,在因道路环境差、网络拥塞随机造成图像模糊时,往往误判.为此,在机理上,分析比较了上述分类算法与特征白化、稀疏编码算法的局限或优势,提出了适应低清晰度视频的"白化-稀疏特征"车型分类算法.该分类算法采取PCA白化技术特征数据预处理、超完备基的凸优化迭代,从而获得稀疏编码特征数据.经与SIFT-SVM算法的现场图像检测比较,其在图像模糊条件时的分类准确率也能达到90%,一般优于93%,均耗时约0.04s. Vehicle Classification makes great significance in the division of different lanes and traffic statistics.Videobased vehicle classification detection has a wide range of potential applications.Currently,the approaches based on Computer Vision may incur huge errors in the case of blur videos caused by the external environment.So after the discussion of the Whitening Preprocessing technic,we propose a"Whitening-Sparse Coding"vehicle classification algorithm which can adapt to low resolution videos.We compared the SIFT-SVM vehicle classification algorithm with the"Whitening-Sparse Coding"algorithm by theoretical analysis and experiments.By the use of the NingHuai Freeway we find that The"Whitening-Sparse Coding"algorithm can classify more quickly,be more adaptive to all kinds of environment and has a higher accuracy.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第2期257-263,共7页 Journal of Nanjing University(Natural Science)
基金 国家科技重大专项(2012ZX03005-004-003) 国家自然科学基金(61105015) 江苏省科技厅项目(BE2011747)
关键词 车型分类 视频检测 稀疏编码 尺度不变特征转换SIFT vehicle classification video detection sparse coding scale-invariant feature transform(SIFT)
  • 相关文献

参考文献15

  • 1夏英,梁中军,王国胤.基于时空分析的短时交通流量预测模型[J].南京大学学报(自然科学版),2010,46(5):552-560. 被引量:8
  • 2Tsai G. Histogram of oriented gradients. University of Michigan, 2010.
  • 3Dalal N, Triggs B. Histograms of oriented gradients for human detection//Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. IEEE, 2005, 1: 886-893.
  • 4Law M T, Thome N, Cord M. Fusion in Computer Vision. Springer International Publishing, 2014:29-52.
  • 5Doan D A, Tran N, Vo D, et al. Computational Science and Its Applications – ICCSA 2013[M]. Springer Berlin Heidelberg, 2013:321-331.
  • 6Moranduzzo T, Melgani F. A SIFT-SVM method for detecting cars in UAV images[C] //Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International. IEEE, 2012: 6868-6871.
  • 7Mikolajczyk K, Leibe B, Schiele B. Local features for object class recognition//Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on. IEEE, 2005, 2: 1792-1799.
  • 8白龙飞,王文剑,郭虎升.一种新的支持向量机主动学习策略[J].南京大学学报(自然科学版),2012,48(2):182-189. 被引量:10
  • 9Mo S. Data whitening in base-band to reduce PSD of UWB signals. IEEE802, 2003, 15.
  • 10Eldar Y C, Oppenheim A V. MMSE whitening and subspace whitening. Information Theory, IEEE Transactions on, 2003, 49(7): 1846-1851.

二级参考文献28

  • 1佘江峰,冯学智,都金康.时空数据模型的研究进展评述[J].南京大学学报(自然科学版),2005,41(3):259-267. 被引量:29
  • 2尚宁,覃明贵,王亚琴,崔中发,崔岩,朱扬勇.基于BP神经网络的路口短时交通流量预测方法[J].计算机应用与软件,2006,23(2):32-33. 被引量:31
  • 3王进,史其信.短时交通流预测模型综述[J].中国公共安全(学术版),2005(1):92-98. 被引量:59
  • 4杨兆升,王媛,管青.基于支持向量机方法的短时交通流量预测方法[J].吉林大学学报(工学版),2006,36(6):881-884. 被引量:80
  • 5Simon H A,Lea G. Problem solving and rule education:A unified view knowledge and organ-ization[J].Erbuam,1974,(02):63-73.
  • 6Dagan I,Engelson S. Committee-based sampling for training probabilistic classifiers[A].Tahoe City:Morgan Kavfmann,1995.150-157.
  • 7Lewis W,Gale A. A sequential algorithm for training text classifiers (uncertainty sampling)[A].Lodon:Springer-Verlag,1994.3-12.
  • 8Tong S,Koller D. Support vector machine ac- tive learning with applications to text Classifica- tion[J].Journal of Machine Learning Research,2001.45-66.
  • 9Schohn G,Cohn D. Less is more: Active learn- ing with support vector machines[A].San Francisco:Morgan Kaufmann Publishers,2000.45-66.
  • 10Seung H S,Opper M,Sompolinsky H. Query by committee[A].University of Clifornia:Association for Computing Machinery,1992.287-294.

共引文献16

同被引文献28

  • 1ZHANG Zhaoxiang,TAN Tieniu,HUANG Kaiqi,et al.Three-dimensional deformable-model-based localization and recognition of road vehicles[J].IEEE Transactions on Image Processing,2012,21(1):1-13.
  • 2WOOD R J,REED D,LEPANTO J,et al.Robust background modeling for enhancing object tracking in video[J].Proceedings of the SPIE,2014,9089(2):1-9.
  • 3DALAL N,TRIGGS B.Histograms of oriented gradients for human detection[C]∥Proceedings of the 2005IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway,NJ,USA:IEEE,2005:886-893.
  • 4DONG Weisheng,LI Xin,ZHANG Lei,et al.Sparsity-based image denoising via dictionary learning and structural clustering[C]∥Proceedings of the 2011IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ,USA:IEEE,2011:457-464.
  • 5MAIRAL J,BACH F,PONCE J,et al.Discriminative learned dictionaries for local image analysis[C]∥Proceedings of the 2008IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ,USA:IEEE,2008:1-8.
  • 6YANG Jianchao,YU Kai,GONG Yihong,et al.Linear spatial pyramid matching using sparse coding for image classification[C]∥Proceedings of the 2009IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ,USA:IEEE,2009:1794-1801.
  • 7LEE H,BATTLE A,RAINA R,et al.Efficient sparse coding algorithms[J].Advances in Neural Information Processing Systems,2006,19(1):801-808.
  • 8SERRE T,WOLF L,POGGIO T.Object recognition with features inspired by visual cortex[C]∥Proceedings of the 2005IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway,NJ,USA:IEEE,2005:994-1000.
  • 9BOUREAU Y L,BACH F,LECUN Y,et al.Learning mid-level features for recognition[C]∥Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway,NJ,USA:IEEE,2010:2559-2566.
  • 10李冠峰,姚新胜,高献坤,周杰.高速公路客货车混行问题与分道行驶的优势分析[J].交通运输工程与信息学报,2009,7(3):1-5. 被引量:17

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部