期刊文献+

基于HVS和四元数的彩色图像质量评价方法 被引量:4

Assessment method for color image quality based on HVS and quaternion
下载PDF
导出
摘要 彩色图像质量客观评价为后续图像处理的基础,须与人眼感觉一致,而传统的评价往往与主观视觉相差较大.为此,分析了人类视觉系统特性、四元数基础,解析了彩色图像转化为灰度图像处理等难度,提出了结合人眼视觉特性和四元数的全参考型彩色图像质量评价方法 HVS-QSVD.其通过空间位置函数、局部方差函数、纹理边缘复杂度函数、颜色信息等,构建了相应的评价算法模型.经LIVE(Laboratory for Image and Video Engineering)图像数据库与其他方法比对,结果表明该方法优越,更为符合人眼视觉感知,为高速公路视频事件检测、工业视觉瓷砖分类检测的应用,奠定了基础. As the base of further image processing,color image quality assessment is assumed to be identical to the subjective assessment of human vision systems(HVS).However,the traditional assessment methods may result in evaluations quite different from the subjective visual assessment.To solve this problem,this paper analyzed the characteristics of human vision systems and the quaternion,discussed difficulties in converting color images into gray ones and finally proposed a full-reference color image quality assessment method called HVS-QSVD,which integrated the characteristics of human vision systems and the quaternion.Also,this paper constructed evaluations of spatial locations,local variance,the complexity of the texture edge and the color information based on the human vision characteristics.By utilizing the above four evaluations as the elements of quaternions,a model is finally proposed to assessment the quality of color images.Experimental results on LIVE image database and other methods confirm that the proposed model is more effective to get an evaluation result identical to human vision.The proposed assessment model could also be used in applications such as Shanghai-Nanjing expressway video detection and industrial tile classification detection.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第2期271-278,共8页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(61105015) 江苏省自然科学基金(BK201121582)
关键词 图像质量评价 人眼视觉系统特性 四元数 奇异值分解 image quality assessment human vison systems quaternion singular value decomposition
  • 相关文献

参考文献11

  • 1Steiding C, Kolditz D, Kalender W A. A quality assurance framework for the fully automated and objective evaluation of image quality in cone-beam computed tomography[J]. Medical physics, 2014, 41(3): 031901.
  • 2Narvekar N D, Karam L J. A no-reference image blur metric based on the cumulative probability of blur detection (CPBD)[J]. Image Processing, IEEE Transactions on, 2011, 20(9): 2678-2683.
  • 3Liu A, Lin W, Narwaria M. Image quality assessment based on gradient similarity[J]. Image Processing, IEEE Transactions on, 2012, 21(4): 1500-1512.
  • 4Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. Image Processing, IEEE Transactions on, 2004, 13(4): 600-612.
  • 5Xue W, Zhang L, Mou X, et al. Gradient magnitude similarity deviation: A highly efficient perceptual image quality index[J]. 2014.
  • 6Gai S, Yang G, Wan M, et al. Denoising color images by reduced quaternion matrix singular value decomposition[J]. Multidimensional Systems and Signal Processing, 2013: 1-14.
  • 7Chen T, Wu H R. Space variant median filters for the restoration of impulse noise corrupted images[J]. Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, 2001, 48(8): 784-789.
  • 8胡许明,张登福,南栋,陈雕.基于人眼视觉特性的图像视觉质量评价方法[J].计算机应用,2012,32(7):1882-1884. 被引量:19
  • 9Sheikh H R, Wang Z, Cormack L, et al. LIVE image quality assessment database release 2[J]. 2005.
  • 10Video Quality Experts Group. Final report from the Video Quality Experts Group on the validation of objective models of video quality assessment, Phase II (FR_TV2)[J]. http://www.vqeg.org/ . 2003.

二级参考文献15

  • 1马文波,赵保军,任宏亮,毛二可.基于小波频带划分及CSF特性的图像质量评价方法[J].激光与红外,2007,37(7):687-690. 被引量:18
  • 2WANDELL B A. Foundations of vision [ M]. Stamford: Sinauer As- sociates Inc, 1995.
  • 3SAKRISON D J. On the role of the observer and a distortion measure in image transmission [ J]. IEEE Transactions on Communication, 1977, COM-25(11): 1251-1267.
  • 4LEGGE G E, FOLEY J M. Contrast masking in human vision [J]. Journal of the Optical Soeiety of America, 1950, 70(12) : 1458 - 1471.
  • 5RAJASHEKAR U, van der LINDE I, BOVIK A C, et al. GAFFE: a gaze-attentive fixation finding engine [ J].IEEE Transactions onImage Processing, 2008, 17(4): 564-573.
  • 6WANG ZHOU. LU LIGANG, BOV1K A C. Foveation scalable vide- o coding with automatic fixation selection [ J]. IEEE Transctions on Image Processing, 2003, 12(2) : 243 -254.
  • 7LIT L, SUNDAREHAN M K, ROEHRIG H. Adaptive image con- trast enhancement based on human visual properties [ J]. IEEE Transactions on Medical Imaging, L994, 1344): 573-596.
  • 8RAJASHEKAR U, van der LINDE I, BOVIK A C, et al. Foveated analysis of image features at fixations [J]. Vision Research, 2007 47(25) : 3160 -3172.
  • 9AZIZ M Z, MERTSCHING B. Fast and robust generation of feature maps for region-based visual attention [J]. 1EEE Transactions on Image Processing, 2008, 17(5) : 633 -644.
  • 10TANG C W, CHEN C H, YU Y H, et al. Visual sensitivity guided bit allocation for video coding [J]. IEEE Transactions on Multimedi- a, 2006, 8(I): 11-18.

共引文献20

同被引文献46

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部