期刊文献+

Databases and Web Tools for Cancer Genomics Study 被引量:3

Databases and Web Tools for Cancer Genomics Study
原文传递
导出
摘要 Publicly-accessible resources have promoted the advance of scientific discovery. The era of genomics and big data has brought the need for collaboration and data sharing in order to make effective use of this new knowledge. Here, we describe the web resources for cancer genomics research and rate them on the basis of the diversity of cancer types, sample size, omics data comprehensiveness, and user experience. The resources reviewed include data repository and analysis tools; and we hope such introduction will promote the awareness and facilitate the usage of these resources in the cancer research community. Publicly-accessible resources have promoted the advance of scientific discovery. The era of genomics and big data has brought the need for collaboration and data sharing in order to make effective use of this new knowledge. Here, we describe the web resources for cancer genomics research and rate them on the basis of the diversity of cancer types, sample size, omics data comprehensiveness, and user experience. The resources reviewed include data repository and analysis tools; and we hope such introduction will promote the awareness and facilitate the usage of these resources in the cancer research community.
出处 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2015年第1期46-50,共5页 基因组蛋白质组与生物信息学报(英文版)
基金 supported by the Strategic Priority Research Program of the Chinese Academy of Sciences,Stem Cell and Regenerative Medicine Research(Grant No.XDA01040405) the National High-tech R&D Program of China(863Program,2012AA022502) the National‘‘Twelfth FiveYear’’Plan for Science&Technology Support of China(2013BAI01B09) awarded to XF the National Natural Science Foundation of China(Grant No.31471236)awarded to YL
关键词 Cancer Genomics Data integration Resource Collaboration Cancer Genomics Data integration Resource Collaboration
  • 相关文献

参考文献14

  • 1Wilks C, Cline MS, Weiler E, Diehkans M, Craft B, Martin C, et al. The Cancer Genomics Hub (CGHub): overcoming cancerthrough the power of torrential data. Database (Oxford) 2014;2014:bau093.
  • 2Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 2015;43:D805-11.
  • 3Marx V. Drilling into big cancer-genome data. Nat Methods 2013;10:293-7.
  • 4Packer BR, Yeager M, Burdett L, Welch R, Beerman M, Qi L, et al. SNP500Cancer: a public resource for sequence validation, assay development, and frequency analysis for genetic variation in candidate genes. Nucleic Acids Res 2006;34:D617-21.
  • 5Samur MK, Yan Z, Wang X, Cao Q, Munshi NC, Li C, et al. CanEvolve: a web portal for integrative oncogenomics. PLoS One 2013;8:e56228.
  • 6He X, Chang S, Zhang J, Zhao Q, Xiang H, Kusonmano K, et al. MethyCancer: the database of human DNA methylation and cancer. Nucleic Acids Res 2008;36:D836-41.
  • 7Bhattacharya A, Ziebarth JD, Cui Y. SomamiR: a database for somatic mutations impacting microRNA function in cancer. Nucleic Acids Res 2013;41:D977-82.
  • 8Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013;6:11.
  • 9Goldman M, Craft B, Swatloski T, Ellrott K, Cline M, Diekhans M, et al. The UCSC cancer genomics browser: update 2013. Nucleic Acids Res 2013;41:D949-54.
  • 10Zhang J, Finney RP, Rowe W, Edmonson M, Yang SH, Dracheva T, et al. Systematic analysis of genetic alterations in tumors using Cancer Genome WorkBench (CGWB). Genome Res 2007;17:1111-7.

同被引文献31

  • 1Tavazoie S,Hughes JD,Campbell MJ,et al.Systematic determination of genetic network architecture[J].Nat Geneti 1999,22(3):281-285.
  • 2Ledford H.Biid of cancer-genome project prompts rethink[J].Nature,2015,517(7533):128-129.
  • 3De Magalhibs JP,Finch CE,Janssens.Next-generation sequencing in aging research:enlergihg applications,problems,pitfalls and possible solutions[J].Ageing Research Reviews,2010,9(3):315-323.
  • 4Blackstock WP,Weir MP Weir.Proteoniies:quantitative and physical mapping of cellular proteins[J].Trends BiotechfiSl,1999,17(3):121-127.
  • 5Krogan NJ,Lippman S,Agard DA,et al.The ediifeef cell map initia- tive:defining the hallmark networks of cancer[J]; Mbl Cell,2015,8(4):690-698.
  • 6Pattin KA,Greene AC,Altman RB,et al.Training th6 next generation of quantitative biologists in the era of big datd; Pacific Symposium on Biocomputing[J].Pacific Symposiuili on Biocomputing,2015,488-492.
  • 7Jim Gray.A BriefIntroduction to Jim Gray on eScience:A Transformed Scientific Method[J].e-Science Technology & Application,2010,Vl (2):92-94.
  • 8Jiang R,Wu M,Li L.Pinpointing disease g(§nes through phenomic and genomic data fusion[J].BMC genomics,加15,16(2):S3.
  • 9Sengupta PP.Intelligent platforms for disease assessment:Novel ap- proaches in functional echocardiography[J].JACC Cardiovascular imaging,2013,6(11):1206-12111.
  • 10Chaussabel D,Pulendran B.A vision and a prescription for big data- enabled medicine[J].Nature immunology,2015,16(5):435-439.

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部