期刊文献+

一种基于粒子群算法改进的ARCH模型及对国内油价波动的研究

The Improved ARCH Model Based on Particle Swarm Optimization Algorithm and the Study of Domestic Oil Price Fluctuations
下载PDF
导出
摘要 传统的ARCH模型族在参数估计中使用的极大似然估计存在鲁棒性差和易收敛到局部最优解的缺点,为克服传统参数估计的上述缺点,提出了基于粒子群算法改进的智能算法,并利用粒子群算法对国内油价建立了AR(1)-ARCH、AR(1)-TARCH(1)模型. Traditional ARCH model used maximum likelihood estimation to estimate parameter which exist low robustness and convergence to local optimal solution.In order to overcome the shortcomings of traditional parameter estimation,this paper puts an intelligent algorithm based on Particle Swarm Optimization(PSO)algorithm and builds ARCH models of domestic oil prices.
作者 王雁 冯长焕
出处 《兰州文理学院学报(自然科学版)》 2015年第2期10-13,共4页 Journal of Lanzhou University of Arts and Science(Natural Sciences)
关键词 粒子群算法 ARCH模型 参数估计 PSO ARCH model parameter estimation
  • 相关文献

参考文献4

  • 1BERNDT EK, HALL B H, HALL R E, et al. Esti-mation and inference in nonlinear structural models[J]. Annals of Economic and Social Measurement,1974:653-665.
  • 2HANSEN L, SINGLETON K. Generalized instru-mental variables estimation of nonlinear rational ex-pectations modelsQ], Econometrica,1982? 50: 1269-1286.
  • 3KENNEDY J, EBERHART R. Particle swarm opti-mization[C]. Proceeding of the IEEE InternationalConference on Neural Networks, Perth, Australia,IEEE Service Center Piscataway NJ,1995,4 : 1942-1948.
  • 4BOLLERSLEV T. Generalized autoregressive condi-tional heteroskedasticityQ], Econometrics, 1986, 31 :307-327.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部