期刊文献+

一类次线性离散Hamiltonian系统的周期解

Periodic Solution for a Class of Sublinear Discrete Hamiltonian System
下载PDF
导出
摘要 研究非自治离散Hamiltonian系统周期解的存在性问题.在非线性项次线性增长时,将这类系统的周期解转化为定义在一个适当空间上泛函的临界点,然后利用临界点理论建立了此类系统周期解的存在性结果. In this paper,we investigate the existence of periodic solutions for non-automous discrete Hamiltonian system,we convert periodic solutions of the system into the critical points of a functional defined on a proper space,and prove that there existence of periodic solutions by critical point theory.
作者 张环环
出处 《兰州文理学院学报(自然科学版)》 2015年第2期23-26,42,共5页 Journal of Lanzhou University of Arts and Science(Natural Sciences)
基金 数学天元基金(11326100) 中央高校基本科研业务费专项资助(31920130010)
关键词 一阶离散Hamiltonian系统 次线性 临界点 First order discrete Hamiltonian system sublinear critical point
  • 相关文献

参考文献9

二级参考文献31

  • 1郭志明,庾建设.Existence of periodic and subharmonic solutions for second-order superlinear difference equations[J].Science China Mathematics,2003,46(4):506-515. 被引量:55
  • 2Xue Y F, Tang C L. Existence of a periodic solution for subquadratic second-order discrete Hamiltonian system[J].Nonlinear Anal, 2007,67 (7):2072-2080.
  • 3Xue Y F, Tang C L. Multiple periodic solutions for superquadratic second-order discrete Hamiltonian systems[J]. Appl Math Comput, 2008,196 (2) : 494-500.
  • 4Zhou Z, Yu J S, Guo Z M. Periodic solutions of higher-dimensional discrete systems[J].Proc Roy Soc Edinburgh Sect A,2004,134(3) :1013-1022.
  • 5Yu J S, Guo Z M, Zou X F. Periodic solutions of second order self-adjoint difference equations[J].J London Math Soc, 2005,71 (2) : 146-160.
  • 6Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations[M]. New York: CBMS Reg Conf Ser in Math 65,1986.
  • 7Clark D C. A variant of the Liusternik-Schnirelman theory [J].Indiana Univ Math J,1972,22(1):65-74.
  • 8Guo Z M, Yu J S. The existence of periodic and subharmonic solutions of subquadratic second order difference equations[J]. J London Math Soc, 2003,68(2) :419-430.
  • 9Bin H H, Yu J S, Guo Z M. Nontrivial periodic solutions for asymptotically linear resonant difference problem [J]. J Math Anal Appl, 2006,322 ( 1 ) : 477-488.
  • 10Hale J K, Mawhin J. Coincidence degree and periodic solutions of neutral equations. J Differential Equations,1974, 15:295-307.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部