期刊文献+

可压缩向列型液晶流体的适定性 被引量:1

On the well-posedness for the compressible nematic liquid crystal flow
原文传递
导出
摘要 本文研究多维(N 2)可压缩向列型液晶流体的Cauchy问题,在初始密度远离真空这个自然的条件下,借助于Littlewood-Paley理论和Schauder-Tychonoff不动点定理,在基于Lp框架下的临界Besov空间中证明大初值意义下可压缩向列型液晶模型强解的局部存在性和唯一性. The Cauchy problem for the compressible flow of nematic liquid crystals in dimension(N 2) is considered. Employing the Littlewood-Paley theory and Schauder-Tychonoff fixed point theorem, we prove the local well-posedness of the system for large initial data in critical Besov spaces based on the Lpframework under the sole natural assumption that the initial density is bounded away from zero.
出处 《中国科学:数学》 CSCD 北大核心 2015年第4期331-348,共18页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11171034和11371221) 中国博士后科研基金(批准号:2014M561893)资助项目
关键词 局部适定性 可压缩向列型液晶流体 BESOV空间 local well-posedness compressible liquid crystal flow Besov space
  • 相关文献

参考文献24

  • 1Ericksen J L. Hydrostatic theory of liquid crystal. Arch Ration Mech Anal, 1962, 9:371-378.
  • 2Leslie F M. Some constitutive equations for liquid crystals. Arch Ration Mech Anal, 1968, 28:265-283.
  • 3Morro A. Modelling of nematic liquid crystals in electromagnetic fields. Adv Theor Appl Mech, 2009, 2:43 58.
  • 4Zakharov A V, Vakulenko A A. Orientational dynamics of the compressible nematic liquid crystals induced by a temperature gradient. Phys Rev E (3), 2009, 79:011708.
  • 5Hu X P, Wu H. Global solution to the three-dimensional compressible flow of liquid crystals. SIAM J Math Anal, 2013, 45:2678-2699.
  • 6Ding S J, Huang J R, Wen H Y, et al. Incompressible limit of the compressible hydrodynamic flow of liquid crystals. J Funct Anal, 2013, 264:1711-1756.
  • 7Huang T, Wang C Y, Wen H Y. Strong solutions of the compressible nematie liquid crystal flow. J Dii~erential Equations, 2012, 252:2222-2265.
  • 8Fujita H, Kato T. On the Navier-Stokes initial value problem, I. Arch Ration Mech Anal, 1964, 16:269-315.
  • 9Danchin R. Global existence in critical spaces for compressible Navier-Stokes equations. Invent Math, 2000, 141: 579-614.
  • 10Danchin R. Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density. Comm Partial Differential Equations, 2007, 32:1373-1397.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部