期刊文献+

有限域上高斯正规基的一个注记 被引量:2

A Note on Gauss Period Normal Bases over Finite Fields
下载PDF
导出
摘要 利用有限域和分圆数的性质,给出Fqn在Fq上7-型高斯正规基满足一定条件的等价刻画. By using properties of finite fields and cyclotomic mumbers,the present paper gives a necessary and sufficient condition for the type 7 Gauss periocl normal basis over finite fields which satiesfies some special conditions.
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2015年第2期159-163,共5页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11401408) 四川省教育厅自然科学重点基金(14ZA0034)资助项目
关键词 有限域 正规基 乘法表 复杂度 分圆数 finite field normal basis multiplication table complexity cyclotomic number
  • 相关文献

参考文献14

  • 1Anuradha S, Gurmeet K. Baksh. The weight distribution of some irreducible cyclic codes [ J ]. Finite Fields Their Appl,2012, 18(1) :144 -159.
  • 2Christopolou M, Garefalakis T, Panario D, et al. Gauss periods as constructions of low complexity normal bases[J]. Des Codes Cryptogr,2012,62:43 - 62.
  • 3Ding C, Helleseth T. New generalized cyclotomy and its applications[ J]. Finite Fields Their Appl, 1998,4:140 -166.
  • 4Ding C, Helleseth T. Generalized cyclotomic codes of length p, [ C ]//IEEE Trans Inform Theory, 1999,45 (2) :467 -474.
  • 5Gao S, Lenstra Jr H W. Optimal normal bases[J]. Des Codes Cryptogr,1992,2:315 -323.
  • 6Gao S, Gathen J V Z, Panario D, et al. Algorithms for exponentiation in finite fields [ J ]. J Symbol Comput,2000,29:879 -889.
  • 7Liao Q Y, Feng K Q. On the complexity of the normal basis via prime Gauss period over finite fields[J]. J Sys Sci Complexity, 2009,22(3) :395 -406.
  • 8Mullin R, Onyszchuk I, Vanstone S, et al. Optimal normal bases in GF(pm) [ J]. Discrete Appl Math, 1988/1989,22: 149 - 161.
  • 9Lidl R, Niederreiter H. Finite Fields[ M]. Cambridge:Cambridge University Press, 1987.
  • 10Lidl R, Niederreiter H. Finite Fields and Their Applications[ M ]. 2nd Ed. Cambrige:Cambrige University Press, 1994.

二级参考文献13

共引文献8

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部