期刊文献+

强右C-wlpp半群 被引量:1

Strong Right C-wlpp Semigroups
下载PDF
导出
摘要 称半群S是强右C-wlpp的,若a∈S,E(R**a)≠Φ且存在唯一a+∈E(R**a),a+a=a,进而x,y∈S,e∈E(S)有xey=xye,证明这类半群是C-wlpp半群和左正规带关于半格Y的织积,也是L右消半群Mα×Lα(α∈Y)的强半格Y,其中Mα是L-右消幺半群,Lα是左零半群. A semigroup S is said to be strong right C-wlpp,if a∈ S,E(Ra^**)≠Φ and there exists a unique a+∈ E(Ra^**)such that a+a = a,moreover x,y∈S,e∈E( S) the equation xey = xye is satisfied. In this paper it is proved that a semigroup S is strong right C-wlpp if and only if S is a spined product of a C-wlpp semigroup and a left normal band with respect to a semilattice,if and only if S is a strong semilattice of a family L-right cancellative semigroups { Mα× Lα| α∈ Y},where Mα(α∈Y) are L-right cancellative monoids and Lα(α∈Y) are left zero semigroups.
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2015年第2期164-168,共5页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(10971160和10871161) 陕西省自然科学基金(SJ08A06)资助项目
关键词 强右C-wlpp半群 C-wlpp半群 L-右消半群 织积 强半格 strong right C-wlpp semigroup C-wlpp semigroup L-right cancellative semigroup spined product strong semilattice
  • 相关文献

参考文献15

  • 1Clifford A H. Semigroups admitting relative inverses[ J ]. Ann Math, 1941,42:1037 -1049.
  • 2Fountain J B. Right pp monoids with central idempotents[ J]. Semigroup Forum, 1977,13:229 -237.
  • 3Ren X M, Shum K P. Structure theorem for right pp semigroups with left central idempotents [ J ]. Discuss Math Gen Algebra Appl,2000 ,20 :63 - 75.
  • 4Guo Y Q, Shum K P, Zhu P Y. The structure of left C -rpp semigroups[J]. Semigroup Forum,1995,50:9 -23.
  • 5Guo Y Q. Structure of weakly left C -semigroups[ J]. Chinese Sci Bu11,1996,41:462 -467.
  • 6Zhu P Y, Guo Y Q, Shum K P. Structure and characterizations of left Clifford semigroups[ J]. Sci China, 1992 ,A35:791 -805.
  • 7Tang X D. On a theorem of C- wrpp semigroups[ J]. Commun Algebra,1997,25:1499 -1504.
  • 8Tang X D. Semilattiee of * * - simple semigroups [ J ]. Semigroup Forum, 1998,57 : 37 - 41.
  • 9Du L, Shum K P. On left C -wrpp semigroups[ J]. Semigroup Forum,2003,67:373 -387.
  • 10Clifford A H, Preston G B. The Algebraic Theory of Semigroups (11)[ M ]. Providence RI:Am Math Soc, 1967.

二级参考文献14

  • 1郭聿琦.弱左C-半群的结构[J].科学通报,1995,40(19):1744-1747. 被引量:11
  • 2郭聿琦,任学明,岑嘉评.左C─半群的又一结构[J].数学进展,1995,24(1):39-43. 被引量:20
  • 3Petrich M.Lectures in Semigroups.New York:Pitman,1976
  • 4Petrich M,Reilly N.Completely Regular Semigroups.New York:John Wiley & Sons,1998
  • 5Fountain J B.Abundant semigroups.Proc London Math Soc,1982,44:103-129
  • 6Guo Y Q,Shum K P,Zhu P Y.On quasi-C-semigroups and some special subclasses.Algebra Colloquium,1999,6:105-120
  • 7Fountain J B.Right pp monoids with central idempotents.Semigroup Forum,1977,13:229-237
  • 8Kong X Z,Shum K P.On the structure of regular crypto semigroups.Comm Algebre,2001,29(6):2461-2479
  • 9Guo Y Q,Shum K P,Zhu P Y.The structure of left C-rpp semigroups.Semigroup Forum,1995,50:9-23
  • 10Guo X J,Shum K P,Guo Y Q.Perfect rpp semigroups.Comm Algebra,2001,29 (6):2447-2459

共引文献3

同被引文献14

  • 1卢占化,冯秀峰.Type-A半群的表示[J].河南师范大学学报(自然科学版),2007,35(1):40-41. 被引量:4
  • 2VAGNER V V. Generalized groups[J]. Doklady Akademii Nauk SSSR,1952,84:1119 -1122.
  • 3PRESTON G B. Inverse semi - groups[J]. J London Mathematical Society, 1954,29:396 -403.
  • 4HOWIE J M. Fundamentals of Semigroup Theory[ M]. London :Calrendox Press, 1995:186 -186.
  • 5MEDGHALCHI A R, POURMAHMOOD - AGHABABA H. Figa - Talamanca - Herz algebras for restricted inverse semigroups and Clifford semigroups [ J ]. J Math Anal Appl, 2012,395 (2) :473 - 485.
  • 6SHANG Y, WANG L M. The isomorphism theorem of * - bisimple type A o)2 - semigroups [ J ]. J Math Res Appl, 2013, 33(2) :231 -240.
  • 7PASTIJN F. A representation of a semigroup by a semigroup of matrices over a group with zero [ J ]. Semigmup Forum, 1975,10 : 238 - 249.
  • 8FOUNTAIN J B. Aundant semigroups [ J ]. Proc London Math Soc, 1982,44 : 103 - 129.
  • 9FOUNTAIN J B. Adequate semigroups [ J ]. Proc Edinburgh Math Soc, 1979,22 : 113 - 125.
  • 10LAWSON M V. The structure of type -A semigroups[J]. Quart J Math Oxford,1986,37(2) :279 -298.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部