摘要
称半群S是强右C-wlpp的,若a∈S,E(R**a)≠Φ且存在唯一a+∈E(R**a),a+a=a,进而x,y∈S,e∈E(S)有xey=xye,证明这类半群是C-wlpp半群和左正规带关于半格Y的织积,也是L右消半群Mα×Lα(α∈Y)的强半格Y,其中Mα是L-右消幺半群,Lα是左零半群.
A semigroup S is said to be strong right C-wlpp,if a∈ S,E(Ra^**)≠Φ and there exists a unique a+∈ E(Ra^**)such that a+a = a,moreover x,y∈S,e∈E( S) the equation xey = xye is satisfied. In this paper it is proved that a semigroup S is strong right C-wlpp if and only if S is a spined product of a C-wlpp semigroup and a left normal band with respect to a semilattice,if and only if S is a strong semilattice of a family L-right cancellative semigroups { Mα× Lα| α∈ Y},where Mα(α∈Y) are L-right cancellative monoids and Lα(α∈Y) are left zero semigroups.
出处
《四川师范大学学报(自然科学版)》
CAS
北大核心
2015年第2期164-168,共5页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金(10971160和10871161)
陕西省自然科学基金(SJ08A06)资助项目
关键词
强右C-wlpp半群
C-wlpp半群
L-右消半群
织积
强半格
strong right C-wlpp semigroup
C-wlpp semigroup
L-right cancellative semigroup
spined product
strong semilattice