期刊文献+

二阶哈密顿系统的同宿轨 被引量:2

Homoclinic Orbits of the Second-order Hamiltonian System
下载PDF
导出
摘要 利用变分法和傅里叶分析,研究了当势函数满足一定条件时的二阶哈密顿系统同宿轨的存在性.传统的方法是利用山路引理,寻找鞍点型临界点来解决同宿轨的存在性.使用了不常用的变分直接方法,推广前人的结论,证明当势函数满足较弱的条件时同宿轨的存在性. We use the calculus of variation and Fourier analysis to study the existence of homoclinic orbits of the second-order Hamiltonian systems when the potential function to meet certain conditions. The traditional method is to use the mountain pass,looking saddle point type critical point to address the existence of homoclinic orbits. In this paper,we use the direct method is not commonly used variational and we promote the previous conclusion. Finally,we prove the existence of homoclinic orbits when the potential function satisfies the conditions of weakness.
作者 熊胤 蒲志林
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2015年第2期169-171,共3页 Journal of Sichuan Normal University(Natural Science)
基金 四川省科技基础研究项目(2011JY0057)资助项目
关键词 同宿轨 哈密顿系统 变分法 傅里叶分析 Homoclinic orbits Hamiltonian systems the calculus of variation Fourier analysis
  • 相关文献

参考文献19

  • 1Ambrosetti A, Zelati V C. Closed orbits of fixed energy for singular Hamihonian systems[ J ]. Arch Rat Mech Anal, 1990(112) : 339 - 362.
  • 2Ambrosetti A, Zelati V C. Closed orbits of fixed energy for a class of N- body problems[ J]. Ann Inst H Poincare:Analyse Non Lineare, 1992(9 ) : 187 - 200.
  • 3Ambrosetti A, Zelati V C. Pericodic Solutions for Singular Lagrangian Systems [ M ]. Berlin: Springer - Verlag, 1993.
  • 4Benci V, Giannoni G. Periodic solutions of prescribed energy for a class of Hamihonian system with singular potentials [ J ]. J Diff Eqns,82(1989) :60 -70.
  • 5Gluck H, ZiUer W. Existence of periodic motions of conservative systems, in Seminar on Minimal Submanifolds[ C]//Bombieri E Ed. Princeton: Princeton Univ Press, 1983.
  • 6Greco C. Periodic solutions of a class of singular Hamiltonian systems [ J ]. Nonlinear AnaI:TMA, 1988,12:259 -269.
  • 7Rabinowitz P H. Homoclinic orbits for a class of Hamiltonian systems[J]. Proceedings of the Royal Society of Edinburgh, 1990, A114:33 - 38.
  • 8Rabinowitz P H. Homoclinic and heteroclinic orbits for a class of Hamihonian systems[ J]. Calc Var Part Diff Eqns, 1993:1 -36.
  • 9Ekeland I. Convexity Methods in Hamihonian Mechanics[ M]. Berlin :Springer- Verlag, 1990.
  • 10Ekeland I. Variational Methods [ M ]. Berlin : Springer - Verlag, 1990.

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部