期刊文献+

氧化石墨的合成工艺优化及电容特性

Research on synthesis technology optimization and capacitance performance of graphite oxide
下载PDF
导出
摘要 采用改良的Hummers法,设计L9(34)正交实验研究了石墨来源、浓硫酸用量、合成温度及95℃控温时间对所合成氧化石墨(GO)特征峰强度的影响。用X射线衍射光谱法(XRD)、激光粒度分析仪及比表面和孔隙度分析仪,对GO晶体结构和粒径分布进行了分析;利用CV和线性极化曲线法研究了GO的电容特性。结果表明,石墨来源、浓硫酸用量和95℃控温时间影响最为显著。当石墨来源为鳞片石墨、浓硫酸用量为58 m L、合成温度为25℃和95℃控温时间为12 h的工艺参数,为最佳合成工艺条件。该工艺下所制备的GO试样层间距为0.73 nm,中值粒径D50为11.02μm,极化电阻仅为0.24Ω。在2 m V/s扫速下,其放电比电容达到234.1 F/g,即使扫速增加到50 m V/s,该电极仍然能放出高达121.5 F/g的比电容结构。 Graphite oxide (GO) was prepared using the modified Hummers approach, and the orthogonal test L9(34) was designed to study the impacts of graphite source, concentrated sulfuric acid amount, synthesis temperature and temperature control ing time at 95℃ on the characteristic peaks intensity of GO. The crystal structure and particle diameter distribution of samples were characterized by XRD, laser particle size analyzer, specific surface area and pore distribution analyzer. The capacitance characteristic of GO was studied by cyclic voltammetry and linear polarization curves. The results show graphite source, concentrated sulfuric acid amount and temperature control ing time at 95 ℃ make the most significant influence on the capacitance characteristic of GO. The optimum reaction conditions are as fol ows: the graphite source is flake graphite; the concentrated sulfuric acid amount is 58 mL; the synthesis temperature is 25℃;the temperature control ing time at 95℃is 12 h. The as-prepared GO powders have the layer distance of 0.73 nm;the mean median grain size 50 is 11.02μm;the polarization resistance is only 0.24Ω. The discharge specific capacitance is 234.1 F/g with the scan rate of 2 mV/s, and 121.5 F/g with the high scan rate of 50 mV/s.
出处 《电源技术》 CAS CSCD 北大核心 2015年第4期676-679,共4页 Chinese Journal of Power Sources
基金 国家自然科学基金资助项目(21001097) 河南省高校科技创新人才支持计划资助项目(2012HASTIT022) 河南省科技厅基础与前沿技术研究项目(102300410107) 河南省高等学校青年骨干教师资助计划项目(豫教高[2009]844号)
关键词 晶体结构 粒径分布 比电容 氧化石墨 crystal structures particle diameter distribution specific capacitance graphite oxide
  • 相关文献

参考文献11

  • 1VIVEKCHAND S, ROUT C S, SUBRAHMANYAM K, et al. Graphene-based electrochemical supercapacitors [J]. Journal of Chemical Sciences, 2008, 120(1): 9-13.
  • 2黄桥,孙红娟,杨勇辉.氧化石墨的谱学表征及分析[J].无机化学学报,2011,27(9):1721-1726. 被引量:54
  • 3KARPENKO G, TUROV V, KOVTYUKHOVA N, et al. Graphite oxide structure and H~O sorption capacity [J]. Theoretical and Ex- perimental Chemistry, 1990, 26(1): 94-97.
  • 4JHA N, RAMESH P, BEKYAROVA E, et al. High energy density supercapacitor based on a hybrid carbon nanotube-reduced graphite oxide architecture[J]. Adv Energy Mater, 2012, 2(4): 438- 444.
  • 5WU X, LEUNG D Y C. Optimization ofbiodiesel production from camelina oil using orthogonal experiment[J]. Appl Energ, 2011, 88 (11): 3615-3624.
  • 6HANTEL M M, KASPAR T, NESPER R, et al. Partially reduced graphite oxide as an electrode material for electrochemical double- layer capacitors[J]. Chemistry A European Journal, 2012, 18(29) 9125-9136.
  • 7朱俊武,吴继科,杨绪杰,陆路德,汪信.氧化石墨/PDADMAC多层膜的制备及其电化学性能[J].南京理工大学学报,2009,33(5):692-695. 被引量:3
  • 8HAN Y, DING B, TONG H, ct al. Capacitance properties of graph- ite oxidc/poly(3,4-cthylcnc dioxythiophcnc) composites[J]. J Appl Polym Sci, 2011, 121 (2): 892-898.
  • 9覃秋菊,郑炼付,程江,杨卓如,邰晓曦.介孔氧化铈-二氧化锆-环氧树脂杂化材料的制备及其涂膜性能[J].电镀与涂饰,2012,31(10):63-67. 被引量:3
  • 10ZHANG Y,FENG H,WU X,et al. Progress of electrochemical capacitor electrode materials: A review[J]. Int J Hydrogen Energy, 2009,34(11): 4889-4899.

二级参考文献50

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部