期刊文献+

关于增量极限学习机的逼近阶估计

The approximation order of Incremental extreme learning machine
下载PDF
导出
摘要 与以往探究增量极限学习机的全局逼近能力有所不同,文中给出了该算法定量的收敛性分析。源于纯贪婪算法估计逼近阶的思想,文中运用数列构造与不等式缩放等方法估计增量极限学习机的逼近阶,最终用定理证明了它对于连续目标函数f的逼近阶为o(n-16)。这就对增量极限学习机的快速收敛性能给出了清晰解释。 Different from the existing approximation results of Incremental extreme learning machine (I-ELM) , this paper aims at giving the quantitative analysis of this algorithm. Originated from the pure greedy algorithm, the approximation order of I-ELM has been proved by constructing the appropriate sequences and inequalities. 1 At last, in the form of the theorem, this paper proves that the approximation order of I-ELM is (n ^-1/6) for any continuous target function, so the fast Learning essence of I-ELM may be explained clearly.
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第2期173-176,共4页 Journal of Northwest University(Natural Science Edition)
基金 陕西省自然科学基金资助项目(2014JM1016)
关键词 增量极限学习机 贪婪算法 字典集 逼近阶 Incremental extreme learning machine greedy algorithm dictionary approximation rate
  • 相关文献

参考文献11

  • 1BARRON A R. Universal approximation bounds for superpositions of a sigmoidal function [ J ]. IEEE Transaction Information Theory, 1993 (39) :930-945.
  • 2HORNIK K. Approximaton capabilities of multilayer feedforward networks [ J ]. Neural Networks, 1991 (4) : 251-257.
  • 3PARK J, SANDBERG I W. Universal approximation using radial-basis-function networks [ J ]. Neural Com- pute,1991 (3) : 246-257.
  • 4HUANG G B, ZHU Q Y, SlEW C K. Extreme Learning Machine : Theory and applications [ J ]. Neurocomput- ing,2006, 70: 489-501.
  • 5HUANG G B, LEI Chen. Universal Approximation U- sing Incremental Constructive Feedforward Networks With Random Hidden Nodes [ J ]. IEEE Transaction Neural Networks, 2006,17 (4) : 879-892.
  • 6LEVIATAN D, TEMLYAKOV V N. Simultaneous ap- proximation by greedy algorithms [ J ]. Advanced Com- pute Math, 2006,25:73-90.
  • 7HUANG G B, CHEN L. Convex incremental extreme learning machine [ J ]. Neurocomputing, 2007,70 : 3056-3062.
  • 8DEVORE R A, TEMLYAKOV V N. Some remarks on greedy algorithms [ J ]. Advanced Compute Math, 1996,5 : 173-187.
  • 9BARRON R, COHEN A, RONALD A. Denore. Ap- proximation And Learning By Greedy Algorithms [ J ]. The Annals of Statistics, 2008,36( 1 ) :64-94.
  • 10LIVSHITS E D. Rate of Convergence of Pure Greedy Algorithms [ J ]. Math. Notes, 2004, 76 ( 4 ) : 497- 510.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部