期刊文献+

m-半格的模糊理想 被引量:2

Fuzzy ideals of m-semilattices
下载PDF
导出
摘要 通过模糊集理论的方法,给出了m-半格的(素)模糊理想的概念,讨论了(素)模糊理想和(素)理想之间的关系,研究了模糊理想之集的性质。给出了(素)模糊理想和(素)理想的等价刻画,证明了含最小元的正序m-半格的像集中含1的模糊理想之集是分配l-半群。提出的方法能较好地阐述出模糊集理论与m-半格的联系。 By using the fuzzy set method, the concept of (prime) fuzzy ideals of an m-semilattice was introduced, the relationships between (prime) fuzzy ideals and (prime) ideals were discussed and the properties of the sets of all fuzzy ideals were studied. Equivalent characterizations of (prime) fuzzy ideals and (prime) ideals were given, and it is proved that the set of all fuzzy ideals with 1 in their images of a positive m-semilatrice with a bottom element is a distributive 1-semigroup. The link between fuzzy set theory and m-semilattices can be well revealed.
作者 周欣 赵彬
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第2期202-206,共5页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(11171196 11301316) 中央高校基本科研业务费专项基金资助项目(GK201302003)
关键词 m-半格 (素)理想 (素)模糊理想 m-semilattice (prime) ideal (prime) fuzzy ideal
  • 相关文献

参考文献8

  • 1ROSENTHAL K I. Quantales and Their Applications [ M ]. New York : Longman Scientific and Technical, 1990.
  • 2XIE X Y. Ideals in lattice-ordered semigroups [ J 1. Soochow Journal of Mathematics, 1996, 22 : 75-84.
  • 3王顺钦,赵彬.Quantale中的理想[J].陕西师范大学学报(自然科学版),2003,31(4):7-10. 被引量:13
  • 4ZADEH L A. Fuzzy sets [ J ]. Information Control, 1965, 8: 338-353.
  • 5KEHAYOPULU N, TSINGELIS M. The embedding of an ordered greupoid into a poe-groupoid in terms of fuzzy sets [ J ]. Information Sciences, 2003, 152 : 231 - 236.
  • 6XIE X Y, TANG J. Fuzzy radicals and prime fuzzy i- deals of ordered semigroups [ J ]. Information Sci- ences, 2008, 178 : 4357-4374.
  • 7LUO Q J, Wang G J. Roughness and fuzziness in quantales[J]. Information Sciences, 2014, 271: 14- 30.
  • 8ANDERSON M, EDWARDS C C. A representation theorem for distributive l-monoids [ J ]. Canadian Mathematical Bulletin, 1984, 27 : 238-240.

二级参考文献2

共引文献12

同被引文献26

  • 1Pawlak Z. Rough Sets [J]. International Journal of Computer and Information Sciences,1982, 11(5) : 341-356.
  • 2Jarvinen J. Lattice Theory for Rough Sets [ C]//Transactions on Rough Sets IV. Berlin: Springer, 2007 :400-498.
  • 3LIU Guilong, ZHU William. The Algebraic Structures of Generalized Rough Set Theory [J]. InformationSciences, 2008, 178(21) : 4105-4113.
  • 4Biswas R, Nanda S. Rough Groups and Rough Subgroups [J]. Bulletin of the Polish Academy of SciencesMathematics, 1994, 42(3) : 251-254.
  • 5Dawaz B. Roughness in Rings [J]. Information Sciences,2004,164(1/2/3/4) : 147-163.
  • 6Kuroki N. Rough Ideals in Semigroups [J]. Information Sciences, 1997 , 100(1/2/3/4) : 139-163.
  • 7Dubois D,Prade H. Editorial [J]. Fuzzy Sets and Systems, 1987,24(3) ; 259-262.
  • 8CHEN Degang, ZHANG Wenxiu,Yeung D,et al. Rough Approximations on a Complete Completely DistributiveLattice with Applications to Generalized Rough Sets [J], Information Sciences, 2006 , 176(13) : 1829-1848.
  • 9Estaji A A, Hooshmandasl M R,Davvaz B. Rough Set Theory Applied to Lattice Theory [J]. InformationSciences, 2012, 200 : 108*122.
  • 10LIU Guilong. Generalized Rough Sets over Fuzzy Lattices [J]. Information Sciences,2008,178(6) : 1651-1662.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部