期刊文献+

欠观测条件下的高斯和增量卡尔曼滤波算法 被引量:3

Gaussian sum incremental Kalman filter under poor observation condition
下载PDF
导出
摘要 欠观测条件下的增量卡尔曼滤波算法能够消除未知的量测系统误差,提高滤波精度。当系统的过程噪声和量测噪声为非高斯分布时,该算法不能直接使用。针对该问题,结合高斯和滤波算法,提出一种欠观测条件下的高斯和增量卡尔曼滤波算法。该算法将初始状态、过程噪声和量测噪声近似为高斯和的形式,然后按照增量卡尔曼滤波的思想对每个高斯项进行预测和更新,最后以累加和的形式对状态向量进行近似。仿真结果表明,该算法在非高斯噪声分布的情况下,既能成功地消除量测系统误差,又能有效地提高滤波估计的准确度和可靠性。 Incremental Kalman filter under poor observation condition can eliminate unknown measurement system errors and improve the precision of filter. However,when the system process noise and measurement noise are subject to non-Gaussian distributions,the algorithm cannot be used directly. Addressing this problem,this paper presented a Gaussian sum incremental Kalman filter under poor observation condition though combining with the Gaussian sum filtering algorithm. In the algorithm,it approximated the initial state,process noise and measurement noise by the form of Gaussian sum. Then it used each Gaussian item to predict and update according to the incremental Kalman filter theory. Finally,it approximated state value by using the form of accumulated sum. Simulation results show,in systems with non-Gaussian noise distribution,the proposed algorithm can eliminate the measurement system successfully,and can improve the accuracy and reliability effectively.
出处 《计算机应用研究》 CSCD 北大核心 2015年第5期1365-1368,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61201118) 中国博士后科学基金资助项目(2103M532020) 陕西省教育厅科研计划项目(14JK1304) 西安工程大学青年学术骨干支持计划项目
关键词 高斯和滤波 增量卡尔曼滤波 非高斯噪声 卡尔曼滤波 状态估计 Gaussian sum filter incremental Kalman filter non-Gaussian noise Kalman filter state estimation
  • 相关文献

参考文献12

二级参考文献71

  • 1Arulampalam M S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans.on Signal Processing,2002,50(2):174-188.
  • 2Valiviita S,Ovaska S J.Vainio O.Polynomial predictive filtering in control instrumentation:a review[J].IEEE Trans.on Industrial Electronics,1999,46(5):876-888.
  • 3Nordlund P J.Sequential Monte Carlo filters and integrated navigation[D].Linkoping:Swedish Linkoping University,2002.
  • 4Bergman N.Recursive Bayesian estimation navigation and tracking applications[D].Linkoping:Swedish Link ping University,1999.
  • 5秦永元,张洪钺,汪叔华.卡尔曼滤波与组和导航原理[M].西安:西安工业大学出版社,2004.
  • 6Bar-Shalom Y,Ii X R.Multitarget multisensor tracking:principles and techniques[M].YBS Publishing.1995.
  • 7Gordon N J,Salmond D J.Smith A F M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEE Proc.of Radar and Signal,1993,140(2):107-113.
  • 8Julier S J.Uhlmann J K.A new extension of the Kalman filter to nonlinear systems[C] // The 11th International Symposium on Aerospace/Defence Sensing,Simulation and Controls,1997:182-193.
  • 9Julier S J,Uhlmann J K.Unscented filtenng and nonlinear estimation[J].Proc.of the IEEE,2004,92(3):401-422.
  • 10Kazufumi I.Xiong K Q Gaussian filters for nonlinear filtering problems[J].IEEE Trans.on Automatic control,2000,45(5):910-927.

共引文献51

同被引文献29

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部