期刊文献+

基于Parzen窗条件互信息计算的特征选择方法 被引量:4

Feature selection based on conditional mutual information computation with Parzen window
下载PDF
导出
摘要 为解决连续值特征条件互信息计算困难和对多值特征偏倚的问题,提出了一种基于Parzen窗条件互信息计算的特征选择方法。该方法通过Parzen窗估计出连续值特征的概率密度函数,进而方便准确地计算出条件互信息;同时在评价准则中引入特征离散度作为惩罚因子,克服了条件互信息计算对于多值特征的偏倚,实现了对连续型数据的特征选择。实验证明,该方法能够达到与现有方法相当甚至更好的效果,是一种有效的特征选择方法。 In order to solve the problems of calculating the conditional mutual information of continuous variables and bias of multi-value features,this paper proposed a novel feature selection method. The method was based on computing conditional mutual information with Parzen window called PCMIFS,which adopted Parzen window to estimate the probability density function and compute conditional mutual information of continuous feature. And introduced a penalty factor,feature dispersion,to overcome the bias of multi-value features. The experiment results show that comparing several existing method,PCMIFS can attain better or comparable performance,and is an effective feature selection method.
出处 《计算机应用研究》 CSCD 北大核心 2015年第5期1387-1389,1398,共4页 Application Research of Computers
关键词 特征选择 PARZEN窗 条件互信息 特征离散度 feature selection Parzen window conditional mutual information feature dispersion
  • 相关文献

参考文献13

  • 1毛勇,周晓波,夏铮,尹征,孙优贤.特征选择算法研究综述[J].模式识别与人工智能,2007,20(2):211-218. 被引量:95
  • 2TABAKHI S,MORADI P,AKHLAGHIAN F. An unsupervised feature selection algorithm based on ant colony optimization[J].Engineering Applications of Artificial Intelligence,2014,32:112-123.
  • 3BOLN-CANEDO V,PORTO-DAZ I,SNCHEZ-MARON~O N,et al. A framework for cost-based feature selection[J].Pattern Recognition,2014,47(7):2481-2489.
  • 4QU G,HARIRI S,YOUSIF M. A new dependency and correlation analysis for features[J].IEEE Trans on Knowledge and Data Engineering,2005,17(9):1199-1207.
  • 5LIU H,SUN J,LIU L,et al. Feature selection with dynamic mutual information[J].Pattern Recognition,2009,42(7):1330-1339.
  • 6BATTITI R. Using mutual information for selecting features in supervised neural net learning[J].IEEE Trans on Neural Networks,1994,5(4):537-550.
  • 7张逸石,陈传波.基于最小联合互信息亏损的最优特征选择算法[J].计算机科学,2011,38(12):200-205. 被引量:9
  • 8SOTOCA J,PLA F. Supervised feature selection by clustering using conditional mutual information based distances[J].Patten Recognition,2010,43(6):2068-2081.
  • 9边肇祺,张学工.模式识别[M].2版.北京:清华大学出版社,2001.
  • 10HANJia-wei,Micheline Kanber著.数据挖掘概念与技术[M].北京:机械工业出版社,2007

二级参考文献79

  • 1Aliferis C, Statnikov A, Tsamardinos I, et al. Local causal and Markov blanket induction for causal discovery and feature selection for classification, part I.. algorithrns and empirical evaluation [J]. Journal of Machine Learning Research, 2010,11:171-234.
  • 2Cover T, Thomas J. Elements of Information Theory [M]. New York: Wiley, 1991.
  • 3Faweett T. An introduction to ROC analysis [J]. Pattem Recognition Letters, 2006,27(8): 861-874.
  • 4Fayyad U, Irani K. Multi-interval discretization of continuous valued attributes for classification learning [C]//Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI' 93). San Francisco: Morgan Kaufmarm, 1993:1022-1027.
  • 5Fu S, Desmarais M. Fast Markov blanket discovery algorithm via local learning within single pass[J]. Lecture Notes in Artificial Intelligence, 2008,5032: 96-107.
  • 6Guyon I,Elisseeff A. An introduction to variable and feature selection [J]. Journal of Machine Learning Research, 2003, 3: 1157-1182.
  • 7John G, Langley P. Estimating continuous distributions in Bayesian classifiers [C] // Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence ( UAI ' 95 ). San Mateo: Morgan Kaufmann, 1995 :338-345.
  • 8Liu H, Sun J, Liu L, et al. Feature selection with dy namic mutual information [J]. Pattern Recgonition, 2009,42(7) : 1330-1339.
  • 9Margaritis D, Thrun S. Bayesian network induction via local neighborhoods [R]. TR-CMU-CS-99-134. 1999.
  • 10Qu G, Hariri S, Yousif NL A new depeudency and correlation analysis for features [J]. IEEE Transactions on Knowledge and Data Engineering, 2005,17(9) : 1199-1207.

共引文献122

同被引文献48

引证文献4

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部