期刊文献+

基于贝叶斯压缩感知与形态学成分分析的图像修复方法研究 被引量:3

Study of image inpainting method based on Bayesian compressive sensing and morphological component analysis
下载PDF
导出
摘要 针对传统图像修复方法依赖图像的结构特征和基于稀疏表示的图像修复方法未考虑修复过程中的观测噪声的问题,提出了一种基于贝叶斯压缩感知与形态学成分分析的图像修复方法。首先通过形态学成分分析法利用Curvelet和局部离散余弦变换分别稀疏图像的结构和纹理部分,然后用贝叶斯压缩感知得到稀疏系数的分布函数,分别求得分布函数的均值和方差,将两个均值作为结构和纹理稀疏系数的估计,方差作为噪声的估计,最后合并两部分的修复结果获得修复后的图像。仿真结果验证该方法可以提高图像的修复质量。 To the question that traditional image inpainting methods depended on the structure characteristics of the image and the image inpainting method based on sparse representation without considering observation noise,this paper introduced an image inpainting method based on Bayesian compressive sensing and morphological component analysis. This algorithm transformed the sparsity for structure and texture with Curvelet and local discrete cosine respectively through morphological component analysis firstly. Then it got the posterior distribution function of the two sparse coefficient through Bayesian compressive sensing. It obtained the mean and the variance of the distribution function. The two means could be used as the estimation of the sparse coefficient for structure and texture of the image,and the variance was the estimation of the noise. Lastly,it obtained the inpainting image after merging the two parts. The emulation results prove that this method can improve the quality of image.
机构地区 陕西科技大学
出处 《计算机应用研究》 CSCD 北大核心 2015年第5期1572-1575,共4页 Application Research of Computers
关键词 图像修复 形态学成分分析 贝叶斯压缩感知 后验分布 image inpainting morphological component analysis Bayesian compressive sensing posterior distribution
  • 相关文献

参考文献2

二级参考文献48

  • 1张红英,彭启琮,吴亚东.数字破损图像的非线性各向异性扩散修补算法[J].计算机辅助设计与图形学学报,2006,18(10):1541-1546. 被引量:21
  • 2Chan T F, Shen J. image processing and analysis: variational, PDE, wavelet and stochastic methods [A]. SIAM [C]. Philadelphia, 2005,207-233.
  • 3Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [ J]. Phys. D, 1992,60 : 259-268.
  • 4Witkin A. Scale-space filtering[A]. Int. Joint Conf. on AI. Karlsruhe[C]. 1983,1019-1022.
  • 5Olshausen B A,Field D J. Emergence of simple cell receptive field properties by learning a sparse code for natural images[J]. Nature, 1996,381 :607-609.
  • 6Candes E, Donoho D. New tight frames of curvelets and optimal representations of objects with piecewise singularities[J]. Commun. Pure Appl. Math., 2004, 57: 219- 266.
  • 7Pennec E, Mallat S. Sparse geometric image representation with Bandelets[J].IEEE Trans. On Image Processing, 2005,14(4) : 423-438.
  • 8Chen S,Donoho D, Saunders M. Atomic decomposition by basis pursuit,SIAM Rev. ,2001,43(1) :129-159.
  • 9Mallat S, Zhang Z. Matching pursuits with time-frequency dictionaries[ J]. IEEE Trans. Signal Process., 1993, 41 (12) :3397-3415.
  • 10Donoho D,Huo X. Uncertainty principles and ideal atomic decompositions[J]. IEEE Trans. on Information Theory, 2001,47 (7) :2845-2862.

共引文献11

同被引文献24

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部