期刊文献+

基于直方图梯度计算的T2加权脑部MR图像自动分割 被引量:8

Automatic segmentation of T2 weighted brain MRI based on histogram gradient calculation
下载PDF
导出
摘要 针对脑部核磁共振图像分割问题,提出了一种直方图梯度计算方法。首先,对MR图像的直方图进行平滑处理,从而去除三个体素中出现的最低灰度级;然后,在预处理后的直方图上计算梯度;最后,计算对象数和其所在位置的梯度,并对图像进行自动分割。基于直方图处理进行梯度计算,大大降低了计算复杂度。在T2加权脑部MR图像上的实验结果表明,该方法可以有效地从二维和三维图像中提取出主要脑部区域,并在临床环境中获得的人类脑部MR图像上成功实施,分割效果优于其他几种现有分割算法。 For the issues of magnetic resonance images segmentation,this paper proposed a method based on histogram gradient calculation. Firstly,it smoothed the histogram of MR image so as to remove the lowest grayscale of three individuals.Then,it calculated the gradient on the preprocessed histogram. Finally,it segmented the image after calculating successfully number of objects and their gradients in which they lay. The proposed method was purely based on histogram processing for gradient calculation,so the computational complexity was reduced greatly. Experimental results on T2 weighted MR brain images show that the primary brain areas are extracted out efficiently from 2D and 3D images by the proposed method which has been successfully implemented on human brain MR images obtained in clinical environment. It has better segmentation efficiency than the several existing segmentation algorithms.
出处 《计算机应用研究》 CSCD 北大核心 2015年第5期1576-1579,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61202163) 山西省自然科学基金资助项目(2013011017-2) 山西省科技攻关项目(20130313015-1)
关键词 直方图 梯度计算 磁共振图像 图像分割 T2加权 histogram gradient calculation magnetic resonance images image segmentation T2 weighted
  • 相关文献

参考文献16

  • 1ULLAH H,MARIAMPILLAI A,IKRAM M,et al. Can temporal analysis of optical coherence tomography statistics report on dextrorotatory-glucose levels in blood?[J].Laser Physics,2011,21(11):1962-1971.
  • 2张建伟,方林,陈允杰,詹天明.小邻域统计信息核磁共振医学图像分割模型[J].中国图象图形学报,2014,19(2):305-312. 被引量:4
  • 3刘雅婧,宋余庆,廖定安,夏倩倩.基于核模糊聚类的变分水平集医学图像分割方法[J].计算机应用研究,2013,30(11):3510-3513. 被引量:10
  • 4PAUL T U,BANDHYOPADHYAY S K. Segmentation of brain tumor from brain MRI images reintroducing K-means with advanced dual localization method[J].International Journal of Engineering Research and Applications,2012,2(3):226-231.
  • 5郑兴华,杨勇,张雯,朱英俊,徐伟栋,楼敏.基于C-V模型的脑白质疏松症磁共振图像病变区域分割[J].计算机应用,2011,31(10):2757-2759. 被引量:1
  • 6WANG Xiao-feng,HUANG De-shuang,XU Huan. An efficient local Chan-Vese model for image segmentation[J].Pattern Recognition,2010,43(3):603-618.
  • 7CONTE D,FOGGIA P,TUFANO F,et al. An enhanced level set algorithm for wrist bone segmentation[J].Image Segmentation,InTech,2011,27(4):293-308.
  • 8ATTIQUE M,GILANIE G,MeEHMOOD M S,et al. Colorization and automated segmentation of human T2 MR brain images for characterization of soft tissues[J].PLoS One,2012,7(3):616-628.
  • 9HUANG Yu,DMOCHOWSKI J P,SU Yu-zhou,et al. Automated MRI segmentation for individualized modeling of current flow in the human head[J].Journal of Neural Engineering,2013,10(6):66004-66016.
  • 10来跃深,马天明,田军委.基于直方图相关性约束的快速多阈值FCM图像分割算法[J].计算机工程与科学,2011,33(4):102-106. 被引量:4

二级参考文献87

共引文献19

同被引文献47

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部