摘要
在WDM网中的一个重要问题是使网络的费用最小化.我们的目的是最小化网络中ADM的个数.这个问题的模型是分拆一个完全图的边成一些子图,使每个子图至多有C条边(这里C是疏导率),并且这些子图的点数之和最小.本文对于给定的C,使用图论和设计理论的工具得到了一些求ADM个数(即A(C,N))的方法.也给出了当C=12并且WDM环网的点数N≡0,16(mod 24)时,问题的最优解(即A(C,N)=N(N-1)/4).
A problem in WDM network is to minimize the cost of the network. This paper focuses on minimizing the total number of Add-Drop Multiplexers (ADMs) required in the network. This problem corresponds to a partition of the edges of the complete graph into subgraphs such that the total number of their nodes has to be minimized and each subgraph has at most C edges (where C is the grooming ratio). Using tools of graph and design theory, some methods to obtain the minimal values of ADMs are provided for a given C. Furthermore, the optimal solutions when C=12 and N = 0, 16 (mod 24) are obtained, where N is the size of the WDM ring network.
出处
《应用数学学报》
CSCD
北大核心
2015年第2期193-199,共7页
Acta Mathematicae Applicatae Sinica
基金
河北省自然科学基金(A2014205027)资助项目