期刊文献+

具有脉冲聚能的WMN网络测度增益预测算法

WMN Network Measurement Information Gain Prediction Algorithm with Pulse Energy Shaped
下载PDF
导出
摘要 传统方法中对WMN网络测度的信息度增益预测采用线性时频分析预测方法,当网络数据吞吐量出现非线性增益时,网格能量发散,预测性能不好。提出一种具有脉冲聚能效应的WMN网络测度信息增益预测方法,以活跃状态节点为顶点,通信范围内的节点之间的边为权形成网络图,以估计到的WMN网格方位角作为初值进行前向跟踪,结合随机近场测度信息增益特征指标,得到脉冲聚能的混叠谱估计值,计算网络测度信号起始时刻码相位和载波频率相位的脉冲聚能路径,实现脉冲聚能,改进预测算法。仿真结果表明,该算法能保证WMN网格能量的聚敛,提高预测性能,提高网络寿命和连通性,较传统方法优越。 In the traditional method to measure WMN network information gain predicted by using linear prediction method for the analysis of frequency, when the data throughput of the network in the nonlinear gain, grid energy divergence, forecast performance is not good. WMN network measurement information gain prediction algorithm with pulse energy shaped is proposed, the active state nodes for the vertices, edges between nodes are within communication range for the right form the network diagram, WMN grid orientation to estimate to angle as the initial value of tracking, combined with random nearfield measurement information gain feature index, get aliasing spectrum estimate pulse energy, pulse shaped path computation starting time of network measurement signal code phase and carrier frequency and phase, pulse energy, improved prediction algorithm. The simulation results show that, the algorithm can guarantee the WMN grid convergence, improve the prediction performance, enhance the network lifetime and connectivity, it is better than the conventional methods.
作者 陈万里 李伟
机构地区 黄河科技学院
出处 《科技通报》 北大核心 2015年第4期37-39,共3页 Bulletin of Science and Technology
基金 河南省郑州市"无线与移动通信网络应用技术"(编号:121PCXTD511)
关键词 脉冲聚能 WMN网络 测度 增益 pulse shaped WMN network measure gain
  • 相关文献

参考文献6

二级参考文献25

  • 1Yick J, Mukherjee B, Ghosal D. Wireless sensor network survey [ J ]. Computer Networks, 2008, 52 ( 12 ) : 2292-2330.
  • 2Xu X, Sahni S. Approximation algorithms for sensor de- ployment[ J]. IEEE Transactions on Mobile Computing, 2007, 56(12) : 1681-1695.
  • 3Lin F Y S, Chiu P L. A near-optimal sensor placement algorithm to achieve complete coverage/discrimination in sensor networks[J]. IEEE Comm Letters, 2005, 9(1) : 43-45.
  • 4Jourdan B, Weck 0 L. Layout optimization for a wireless sensor network using a multi-objective genetic algorithm [ C 1//J Proceeding of IEEE Vehicular Technology Confer-ence. Los Angeles: IEEE Press, 2004 : 2466-2470.
  • 5Xu Y, Yao X. A GA approach to the optimal placement of sensors in wireless sensor networks with obstacles and preferences [ C ] JJ Proceedings of IEEE Conference on Consumer Communications and Networking (CCNC). Las Vegas: IEEE Press, 2006: 127-131.
  • 6Hochbaum D S. Approximation algorithms for the set cov- ering and vertex cover problems [ Jl. SIAM Journal on Computing, 1982, 11(3) : 555-556.
  • 7Li Yan, Liu Yao, Zhang Liang-jie, et al. An exploratory study of Web services on the Internet[C]// Proceedings of the 2007 IEEE International Conference on Web Services (ICWS 07 ). Salt Lake City, UT, USA, 2007, Washington, DC, USA: IEEE Computer Society, 2007 : 380-387.
  • 8Charif-Diebbar Y,Sabouret N. Dynamic service composition and selection through an agent interaction protoeo[C]//Proceedings of the 2006 IEEE/WIC/ACM International Conference onWeb Intelligence and Intelligent Agent Technology Workshops (WI- IATW 06). Washington, DC, USA: IEEE Computer Soeiety, 2006:105-108.
  • 9Shao Ling-shuaag. Research on quality of Web services manage- ment technologies [D]. Beijing:Peking University,2009.
  • 10张贤达;保铮.通信信号处理[M]北京:国防工业出版社,2000154351.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部