期刊文献+

功率自激网络最近邻链缓存污染判决门限控制

Power Self-excitation Network Neighbor Chain Cache Pollution Threshold Control
下载PDF
导出
摘要 功率自激网络在攻击容忍系统设计中,由于最近邻链缓存污染,导致对功率自激网络的攻击成功率较高,难以实现有限的拦截。提出采用最近邻链缓存污染判决门限控制的方法,通过自适应门限控制,提高对攻击信号的拦截概率。建立功率自激网络及缓存污染攻击系统模型,假设功率自激网络路由的内容流行度服从Zipf分布,得到入侵最近邻链缓存污染拦截在攻击容忍系统中的功率谱密度特征。采用最大似然估计进行攻击容忍系统中的HMM参数的更新,设计最近邻链缓存污染判决门限控制的方法,改进自适应判决门限控制算法,提高对攻击信号的拦截概率,达到消除缓存污染攻击的效果,实现对内容耗散网络的安全控制。仿真结果表明,该算法能有效实现了对缓存污染的拦截和冗余数据去除,缓存污染攻击拦截率,保证了功率自激网络的安全。 The attack power self excitation network in self tolerance in system design, because the nearest chain cache pollution, lead to the power of self network attack success rate high, it is difficult to achieve finite intercept. The method of the nearest neighbor chain cache pollution threshold control, it is controlled by adaptive threshold, to improve the interception probability of attacks signal. Establishment of power self network and cache pollution attack system model, assuming the power of self routing of content popularity obeys Zipf distribution, we get intrusion nearest neighbor chain cache pollution interception in attack tolerance power spectral density characteristics in the system. Maximum likelihood estimation of HMM attack tolerance parameters in the system was updated by the nearest neighbor method, design chain cache pollution threshold control, improved adaptive threshold control algorithm, improve the interception probability of the signal to attack, to eliminate the effect of cache pollution attacks, security control over the content of dissipative network. The simulation results show that, the algorithm can effectively intercept and reduce redundant data to the cache pollution, cache pollution attack interception rate is improved, it can ensure power self network security.
作者 黄治坤
出处 《科技通报》 北大核心 2015年第4期64-66,共3页 Bulletin of Science and Technology
关键词 功率自激网络 缓存污染 控制 网络安全 power self excitation network cache pollution control network security
  • 相关文献

参考文献5

  • 1沈渊.基于入侵关联跟踪的P2P网络入侵检测方法[J].科技通报,2013,29(6):32-34. 被引量:16
  • 2Mengjun Xie,Indra Widjaja,Haing Wang.Enhancing cache robustness for content-centric networking[C]//IEEE INFOCOM,Orlando.2012,2426-2434.
  • 3Sara Oueslati,James Roberts,Nada Sbihi.Flow-aware traffic control for a content-centric network[C]//INFOCOM,Orlando.2012,2417-2425.
  • 4Reza Moraveji,Javid Taheri,Mohammad Reza,et al.DataIntensive Workload Consolidation for the Hadoop Distributed File System[C]//Proceedings of 2012 ACM/IEEE 13th International Conference on Grid Computing(GRID),Beijing.IEEE Computer Society,2012:95-103.
  • 5余思,桂小林,黄汝维,庄威.一种提高云存储中小文件存储效率的方案[J].西安交通大学学报,2011,45(6):59-63. 被引量:43

二级参考文献13

  • 1穆成坡,黄厚宽,田盛丰.入侵检测系统报警信息聚合与关联技术研究综述[J].计算机研究与发展,2006,43(1):1-8. 被引量:70
  • 2常卫东,王正华,鄢喜爱.基于集成神经网络入侵检测系统的研究与实现[J].计算机仿真,2007,24(3):134-137. 被引量:29
  • 3周荃,王崇骏,王珺,周新民,陈世福.基于人工智能技术的网络入侵检测的若干方法[J].计算机应用研究,2007,24(5):144-149. 被引量:33
  • 4BORTHAKUR D. The hadoop distributed file system:architecture and design [EB/OL]. [2010-08- 25]. http://hadoop, apache, org/core/docs/current/ hdfs_desigru pdf.
  • 5MACKEY G, SEHRI S, WANG Jun. Improving metadata management for small files in HDFS [C/ OL.] // Proceedings of 2009 IEEE International Conference on Cluster Computing and Workshops. [2010- 08- 10]. http://ieeexplore, ieee. org/stamp/stamp. jsp? tp=&arnumber=5289133.
  • 6LIU Xuhui, HAN Jizhong, ZHONG Yunqin, et al. Implementing WebGIS on hadoop: a case study of im- proving small file I/O performance on HDFS [C/OL] //Proceedings of 2009 IEEE International Conference on Cluster Computing and Workshops. [2010-08-10]. http://ieeexplore, ieee. org/stamp/stamp, jsp? tp= &arnumber= 5289196.
  • 7DONG Bo, QIU Jie, ZHENG Qinghua, et al. A novel approach to improving the efficiency of storing and accessing small files on hadoop: a case study by PowerPoint files EC]ffProceedings of the 7th International Conference on Services Computing. Piscataway, NJ, USA: IEEE, 2010: 65-72.
  • 8HUANG Ruwei, YU Si, ZHUANG Wei, et al. Design of privacy-preserving cloud storage framework [C]//Proceedings of the 9th International Conference on Grid and Cloud Computing. Piseataway, NJ, USA:IEEE, 2010: 128-132.
  • 9SATTY T L. Axiomatic foundation of the analytic hierarchy process [J]. Management Science, 1986, 32 (7) - 841-855.
  • 10HAN Jiawei, KAMBER N.Data mining: concepts and techniques [M]. San Francisco, CA, USA:Morgan Kaufmann, 2006.

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部