期刊文献+

基于磁共振电阻抗成像技术的3维脑病变检测仿真 被引量:4

3D Brain Anomaly Tissues Detection Simulation Based on Magnetic Resonance Electrical Impedance Tomography
下载PDF
导出
摘要 为避免成像物体在核磁共振成像系统(MRI)实际操作中的旋转难题,基于微分进化思想提出了一种3维磁共振电阻抗成像算法(MREIT),并采用单方向磁感应强度"测量值"在3维真实头模型上进行了仿真验证研究。结果表明:该算法可以对病变的真实头模型进行阻抗图像重构,且计算值和理论值之间的相对误差<5%,具有较高的成像精度和空间分辨率;实时调整参数因子以适应算法,可以缩短重构时间,加快算法收敛性。因此改进后的算法具有很好收敛性,且成像质量较高,在临床应用上具有一定的可行性。 In order to overcome the difficulty of rotating imaging objects in the operation of magnetic resonance imaging(MRI) system, we proposed an algorithm for three-dimensional magnetic resonance electrical impedance tomography(MREIT) by the differential evolution theory. This algorithm was verified by using a three-dimensional realistic-geometry head model and single-direction magnetic-flux-density measured data. The results show that the proposed algorithm can reconstruct the impedance image of diseased realistic-geometry head model. The error between the calculated value and theoretical value is less than 5%; this indicates high imaging precision and high spatial resolution of the proposed algorithm. By improving factors in real time that fits the algorithm better, it is able to shorten the reconstruction time and accelerate the algorithm convergence. It is concluded that the improved algorithm has good convergence and high imaging quality, and it has potential in clinical applications.
出处 《高电压技术》 EI CAS CSCD 北大核心 2015年第4期1372-1376,共5页 High Voltage Engineering
基金 国家自然科学基金(51107130) 国家质检总局公益性项目(201210079) 浙江省科技厅项目(2011C33027 2013C24019)~~
关键词 电阻抗成像 磁感应强度 头组织 非均质电导率 高精度 有限元分析 electrical impedance tomography magnetic flux density head tissue inhomogeneous conductivity high accuracy finite element analysis
  • 相关文献

参考文献11

二级参考文献188

共引文献133

同被引文献47

  • 1WANG H B, XUGZ, LI Y, et al. An approach to 3DEIT based on generalized backprojection method via node analysis [J]. ICEF, 2012, 19(21): 1-4.
  • 2NAUSHAD A, RASHID A, MAZHAR S. Analysing the performance of EIT images using the point spread function [C]// 2014 International Conference on ICET, Cairo: 2014: 36-41.
  • 3BERA T K, SAIKIA M, NAGARAJU J. A battery-based constant current source(Bb-CCS)for biomedical applicationsEC3//2013 Fourth International Conference on ICCCNT, Tiruehengode:2013, 10 : 1-5.
  • 4LOYOLA B R, LA SAPONARA V, LOH K J, et al. Spatial sensing using electrical impedance tomography [J]. IEEE Sens J, 2013, 13(6): 2357-2367.
  • 5BOUCHETTE G, CHURCH P, MCFEE J E, et al. Imaging of compact objects buried in underwater sediments using elec- trical impedance tomography [J]. IEEE Transactions on Geo- science and Remote Sensing, 2014, 52(2): 1407-1417.
  • 6FERREIRA H R, BUSTOS H A, FIGUREOLA W B. Simu- lation inverse problems of Reconstruction of image data using patterned electrical impedance tomography female breaste Health Networking [C]//IEEE 16th International Conference on HealthCom. 10, 2014: 1-6.
  • 7GUERMANDI M, CARDU R, FRANCHI SCARSELLI E, et al. Active electrode IC for EEG and electrical impedance tomography with continuous monitoring of contact impedance [J]. IEEETransBiomedCircuits Syst, 2015, 9(1): 21 33.
  • 8CONSTANTINOU L, TRIANTIS I F, BAYFORD R, et al. High-power CMOS current driver with accurate transconduct- ance for electrical impedance tomography [J]. IEEE Trans Biomed Circuits Syst, 2014, 8(4): 575-583.
  • 9ZHANG N. Electrical impedance tomography based on current density imaging ED]. Toronto : Msc Thesis University, 1992.
  • 10JEON K, LEE C O. CoReHA 2.0: a software package for in vivo MREIT experiments [J]. Comput Math Methods Med, 2013(2) : 941745.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部