期刊文献+

CuO-H_2O纳米流体强化换热的数值模拟 被引量:6

Numerical Simulation of the Intensified Heat Exchange of CUO-H_2O Nano-fluid
原文传递
导出
摘要 采用数值模拟的方法研究了矩形腔内Cu O-H2O纳米流体自然对流的换热特性和换热机理。重点分析了二维封闭腔内不同Ra数下,纳米颗粒体积分数和粒径对Cu OH2O纳米流体自然对流时温度场和速度场的影响,并探讨了纳米颗粒布朗运动对换热的影响。数值模拟结果表明:对于给定的Ra数,随着体积分数的增大和颗粒粒径的减小,纳米流体的换热效果会显著增强;当Ra数较小时,换热形式主要表现为热传导,随着Ra数的增大,换热形式逐渐变为以热对流为主;纳米颗粒布朗运动是影响纳米流体换热的重要因素,随着布朗运动的增强,纳米流体内部的能量传递增强,从而使换热增强。 By using the numerical simulation method,studied were the natural convection-based heat exchange characteristics and of CUO-H2 O nano-fluid inside a rectangular cavity and the mechanism governing the heat exchange. The emphasis was placed on an analysis of the influence of volumetric fraction and particle size of the nano-fluid on the temperature and speed field inside a two-dimensional enclosed cavity at various Ra numbers formed when the CUOH2 O nano-fluid is undergoing the natural convection and an investigation of the influence of Brownian movement of nano-fluid on the heat exchange. The numerical simulation results show that for a given Ra number,the heat exchange efficiency of the nano-fluid will notably enhance. When Ra number is relatively small,the heat exchange is mainly regarded as the heat conduction. With an increase of Ra number,the heat exchange will gradually become a convection-based heat exchange. Brownian movement of the nano-particles will become an important factor influen-cing the heat exchange of the nano-fluid. With the enhancement of Brownian movement,the energy transfer inside the nano-fluid will also enhance,thus intensifying the heat exchange.
出处 《热能动力工程》 CAS CSCD 北大核心 2015年第2期200-204,316-317,共5页 Journal of Engineering for Thermal Energy and Power
关键词 纳米流体 强化换热 布朗运动 数值模拟 nanofluid,intensified heat exchange,numerical simulation,Brownian movement
  • 相关文献

参考文献12

  • 1ChoiS U S. Enhancing thermal conductivity of fluids with nanopar- ticles [ C ]. Developments and applications of non-NewtonianFlows, San Francisco : ASME Press, 1995:99 - 105.
  • 2J A Eastman, S U S Choi, S Li. Enhanced Thermal Conductivity through the Development of Nanofluids [ J ]. Nanophase and Nano- composite Materials II, MRS, Pittsburgh, 1997,457,3 - 11.
  • 3P Keblinski, J A Eastman, D G Cahill. Nanofluids for thermal transport [ J ]. Materials Today,2005,8 (6) :36 - 44.
  • 4Lee S, Choi S U S. Application of metallic nanoparticle suspensions in advanced cooling systems[J]. ASME ,1996,342,227 -234.
  • 5Abdallah P B. Heat transfer through near-field interactions in nanoflu- ids[ J]. Applied Physics Letters ,2006,89,113 - 117.
  • 6宣益民,李强.纳米流体强化传热研究[J].工程热物理学报,2000,21(4):466-470. 被引量:83
  • 7李强,宣益民.纳米流体强化导热系数机理初步分析[J].热能动力工程,2002,17(6):568-571. 被引量:29
  • 8赵国昌,曹磊,宋丽萍,路天栋.纳米流体导热机理研究分析[J].沈阳航空航天大学学报,2013,30(4):7-11. 被引量:9
  • 9Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids [ J ]. International Journal of Heat and Mass Transfer, 2003,46(19):3639 -3653.
  • 10李新芳,朱冬生.封闭腔内纳米流体强化自然对流换热的数值模拟[J].低温与超导,2009,37(1):67-71. 被引量:4

二级参考文献59

  • 1王补宣,盛文彦.纳米流体导热系数的团簇宏观分析模型[J].自然科学进展,2007,17(7):984-988. 被引量:7
  • 2Li X F, Zhu D S, Wang X J. Evaluation on dispersion behavior of the aqueous copper nano - suspensions [ J ]. Journal of Colloid and Interface Science, 2007,310 (2) : 456 - 463.
  • 3Li X F,Zhu D S,Wang X J,et al. Thermal conductivity enhancement dependent pH and chemical surfactant for Cu - H20 nanofluids[J]. Thermochimica Acta, 2008, 469( 1 -2) :98 - 103.
  • 4Zhu D S, Li X F, Wang N,et al. Dispersion behavior and thermal conductivity characteristics of AlwO3 - H2O nanofluids[J]. Current Applied Physics, 2009,9:131 - 139.
  • 5Lee S, Choi S U S. Applications of metallic nanoparticle suspensions in advanced cooling system [ A ]. in Kwon Y, Davis D, eds. , Recent advance in solids/structures and application of metallic materials, ASME MD -72[C]. New York, 1996:227 -234.
  • 6Khanafer K, Vafai K, Lightstone M. Buoyancy - driven heat transfer enhancement in a two - dimensional enclosure utilizing nanofluids [J].International Journal of Heat Transfer, 2003,46 : 3639 - 3653.
  • 7Barkos G, Mitsoulis E. Natural Convection Flow in a Square Cavity[J].Int. J. Numerical Methods in Fluids, 1994,18:695 - 719.
  • 8Markatos N C,Pericleous K A. Laminar and Turbulent Natural Convection in an Enclosed Cavity[J]. Int. J . Heat Mass Transfer, 1984,27 : 775 - 792.
  • 9[1]Choi U S. Enhancing Thermal Conductivity of Fluids with Nanoparticles. ASME, FED, 1995, 231: 99
  • 10[2]Eastman J A, Choi U S and Li S et al. Enhanced Thermal Conductivity through the Development of Nanofluids. In: Komarneni S, Parker J C and Wollenberger H J. Nanophase and Nanocomposite Materials II, MRS,Pittsburgh, 1997, 3-11

共引文献115

同被引文献42

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部