期刊文献+

多管式气泡泵设计 被引量:1

Design of a Multiple Tube Bubble Pump
原文传递
导出
摘要 以已有的关于气泡泵的实验及理论研究为基础,进行热力学计算,在单管气泡泵取最大直径为31 mm时,其提升量为39.23 g/s。为获得更高的气泡泵管内提升量,当整个单压吸收式制冷系统制冷量选取为3 k W时,相应的气泡泵内总流量为42.3 g/s,采用多管式设计并通过迭代计算确定出不同气泡泵管数目和与其对应的每根提升管输送管内的流量,选定初始的沉浸比,从而得到每根提升管的尺寸,根据气泡泵运行特性及两相流压降计算方法和气泡泵流动压头校核和性能公式,确定出多管式气泡泵结构参数:提升管为3根,每根提升管的直径为20.5 mm、长度为237 mm、沉浸比为0.67。 Based on the currently-available experimental and theoretical study of bubble pumps,the authors conducted a thermodynamic calculation. When the tube of a single tube bubble pump is chosen with its maximal diameter being 31 mm,its lifting flow rate is 39. 23 g / s. When the amount of the cooling energy consumed by a whole single pressure absorption type refrigeration system is chosen as 3 k W,to obtain an even larger lifting flow rate inside the tube of the bubble pump,the corresponding total flow rate inside the bubble pump will be 42. 3 g / s. By using a multiple tubedesign and through a iterative calculation,the flow rate inside the conveying tube of each lifting tubes in the bubble pump was determined and the initial submerging ratio was chosen,thus the dimensions of each lifting tube were obtained. According to the operation characteristics of the bubble pump,the two-phase flow calculation method and the flow head check and performance formulae,the structure of the multiple tube bubble pump was determined: lifting tubes total three,diameter of each lifting tube is 20. 5 mm,their length is 237 mm and the submerging ratio is 0. 67.
出处 《热能动力工程》 CAS CSCD 北大核心 2015年第2期212-217,317-318,共6页 Journal of Engineering for Thermal Energy and Power
基金 上海市教育委员会科研创新项目资助(13ZZ117)
关键词 气泡泵 压降 两相流 沉浸比 bubble pump,pressure drop,two-phase flow,submerging ratio
  • 相关文献

参考文献8

二级参考文献41

共引文献56

同被引文献26

  • 1赵宗昌,周方伟,李凇平.TFE-E181高温型第二类吸收式热泵热力过程分析[J].大连理工大学学报,2004,44(5):651-656. 被引量:6
  • 2孙奇,赵华,杨瑞昌,张红岩.垂直上升两相流漂移流模型研究[J].核动力工程,2006,27(2):40-44. 被引量:7
  • 3Poling B E,Prausnitz J M,O’Connell J P.气液物性估算手册[M].北京:化学工业出版社,2006.
  • 4DELANO A D. Design analysis of the Einsteinrefrigeration cycle[D]. Atlanta: Georgia Institute ofTechnology, 1999.
  • 5WHITE S J. Bubble pump design and performance[D].Atlanta: Georgia Institute of Technology, 2001.
  • 6RATTNER A S, GARIMELLA S. Coupling-fluid heatedbubble pump generators: experiments and modeldevelopment[J]. Science and technology for the builtenvironment, 2015, 21(3): 332-347.
  • 7GUREVICH B, JELINEK M, LEVY A, et al.Performance of a set of parallel bubble pumps operatingwith a binary solution of R134a-DMAC[J]. Appliedthermal engineering, 2015, 75: 724-730.
  • 8RODRíGUEZ-MU-OZ J L, BELMAN-FLORES J M.Review of diffusion-absorption refrigeration technologies[J].Renewable and sustainable energy reviews, 2014, 30:145-153.
  • 9MEDRANO M, BOUROUIS M, CORONAS A.Double-lift absorption refrigeration cycles driven bylow-temperature heat sources using organic fluidmixtures as working pairs[J]. Applied energy, 2001,68(2): 173-185.
  • 10CORONAS A, VALLéS M, CHAUDHARI S K, et al.Absorption heat pump with the TFE-TEGDME andTFE-H2O-TEGDME systems[J]. Applied thermalengineering, 1996, 16(4): 335-345.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部