期刊文献+

Hilbert空间中框架不等式的新形式 被引量:1

New Type of Inequalities for Frames in Hilbert Spaces
下载PDF
导出
摘要 利用算子理论方法,建立了Hilbert空间中Parseval框架和一般框架的新型不等式,所得结果在结构和形式上不同于已有的结果. This article establishes new type of inequalities for Parseval frames and general frames in Hilbert spaces by the method of operator theory which are different both in structure and form from previous ones.
出处 《应用泛函分析学报》 2015年第1期27-32,共6页 Acta Analysis Functionalis Applicata
基金 国家自然科学基金(11271148)
关键词 框架 交替对偶框架 不等式 frame alternate dual frame inequality
  • 相关文献

参考文献14

  • 1Duffin R J, Schaeffer A C. A class of nonharmonic Fourier seriers [J]. Trans Amer Math Soc, 1952, 72(2): 341-366.
  • 2Daubechies L Ten lectures on wavelets [M]. Philadelphia: SIAM, 1992: 53-105.
  • 3Feichtinger H G, Strohmer T. Gabor analysis and algorithms: Theory and applications [M]. Boston: Birkhauser, 1998: 295-452.
  • 4Feichtinger H G, Strohmer T. Advances in Gabor analysis [M]. Boston: Birkhsuser, 2003: 153-195.
  • 5Casazza P G. Modern tools for Weyl-Heisenberg frame theory [J]. Adv Imag Elect Phys, 2001, 115(1): 1-12.
  • 6Christensen O. An introduction to frames and l:tiesz bases [M]. Boston: Birkauser, 2002: 1-136.
  • 7Christensen O. Frames, Riesz bases, and discrete Gabor/wavelete expansions [J]. Bull Amer Math Soc, 2001, 38(3): 273-291.
  • 8Casazza P G, Kutyniok G, Lammers M C. Duality principles in frame theory [J]. J Fourier Anal Appl, 2004 10(4): 383-408.
  • 9Balan R. Equivalence relations and distances between Hilbert frames [J]. Proc Amer Math Soc, 1999, 127(8): 2353-2366.
  • 10相中启,贾琛琛.Christensen的改进结果在研究框架扰动中的应用[J].兰州大学学报(自然科学版),2012,48(4):115-118. 被引量:4

二级参考文献42

  • 1DUFFIN R J, SCHAEFFER A C. A class of nonhar- monic Fourier series[J]. Trans Amer Math Soc, 1952, 72(2): 341-366.
  • 2DAUBECHIES I, GROSSMANN A, MEYER Y. Painless nonorthogonal expansions[J]. J Math Phys, 1986, 27(5): 1 271-I 283.
  • 3DAUBECHIES I, GROSSMANN A. Frames in the Bargmann space of entire functions[J]. Comm Pure Appl Math,1988,41(2): 151-164.
  • 4CHRISTENSEN O. Perturbation of frames and appli- cations to Gabor frames: Gabor Analysis and A1- gorithms[C]//Appl Numer Harmon Anal. Boston: Birkhiuser, 1998: 193-209.
  • 5CHI:tISTENSEN Oo A Paley-Wiener theorem for frames[J]. Proc Amer Math Soc, 1995, 123(7): 2 199-2 202.
  • 6CASAZZA P G, CHRISTENSEN O. Perturbation of operators and applications to frame theory[J]. J Fourier Anal Appl, 1997, 3(5): 543-557.
  • 7YOUNG R M. An introduction to nonharmonic Fourier series[M]. New York: Academic Press, 1980: 184-190.
  • 8CHRISTENSEN Go An introduction to frames and Riesz bases[M]. Boston: BirkhEuser, 2002: 88-124.
  • 9CHRISTENSEN O. Frames and pseudo-inverses[J]. J Math Anal Appl,1995, 195(2): 401-414.
  • 10CHRISTENSEN O. Frames and the projection[J]. Appl Comput Anal, 1993, 1(1): 50-53.

共引文献8

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部