期刊文献+

TiNiZr高温形状记忆合金的马氏体相变和相稳定性的理论研究 被引量:6

Study on Phase Stability and Martensitic Transformation of Ti Ni Zr High-temperature Shape Memory Alloys from First-principles Calculations
下载PDF
导出
摘要 采用基于赝势平面波方法的第一性原理计算,详细研究了Ti Ni Zr高温形状记忆合金的相稳定性、弹性和电子结构等性质。结果表明,由于较低的形成能,添加的Zr元素优先占据Ti Ni合金的Ti位。少量Zr含量的添加,Ti Ni Zr合金的相稳定性增强,然后随着Zr含量的增加而降低。根据Ti Ni Zr合金B2相的弹性系数讨论了Ti Ni Zr合金的马氏体相变温度和相变类型。弹性系数C44对Ti Ni Zr合金的马氏体相变温度有很大的作用。Ni d态和Zr d态杂化作用的增强导致了马氏体相变温度的升高。 Phase stability,elastic property and electronic structure of Ti Ni Zr high-temperature shape memory alloys have been investigated by first-principles calculations by using the pseudopotentials plane-wave method. The results showed that the added Zr preferentially occupies the Ti sites in Ti Ni alloy due to the lowest formation energy. The phase stability of Ti Ni Zr alloys first increased with a small addition of Zr and then decreased with the increasing of Zr content. Based on the elastic constants of the Ti Ni Zr alloys with B2 phases,the martensitic transformation temperature and transformation type were discussed. The elastic constant C44 had the great effect on the martensitic transformation temperature of the Ti Ni Zr alloys. The increase of the martensitic transformation behind the elastic properties resulted from the stronger hybridization between Ni d and Zr d states.
出处 《黑龙江八一农垦大学学报》 2015年第2期79-82,共4页 journal of heilongjiang bayi agricultural university
关键词 马氏体相变 相稳定性 形状记忆合金 第一性原理 martensitic transformation phase stability shape memory alloys first-principles
  • 相关文献

参考文献2

二级参考文献28

  • 1徐万劲.磁控溅射技术进展及应用(上)[J].现代仪器,2005,11(5):1-5. 被引量:48
  • 2吴小梅,李伟光.钛合金ZrN耐磨抗冲蚀防护涂层[J].装备环境工程,2005,2(6):41-44. 被引量:10
  • 3魏荣华,刘燕(翻译).适用于涡轮叶片硬质颗粒冲蚀保护的磁控溅射厚氮化物层及纳米复合镀层研究[J].中国表面工程,2007,20(3):1-8. 被引量:7
  • 4[1]Dolce M, Cardone D, Marnetto R. Implementation and testing of passive control devices based on shape memory alloys[J]. Earthquake Engineering and Structural Dynamics, 2000, 29:945-968.
  • 5[2]van Humbeeck J, Delaey L. Role of interfaces on materials damping[A]. Roth B R, Misa M S. Proc of International Conference on Martensitic Transformations [C]. Toronto, ASM-USA, 1985. 59-64
  • 6[3]Hodgson D, Kramer G. High damping superelastic collects for high speed drilling[A]. Duerig T, Wayman C M. SMST-94 Proc 1st Intl Conf on Shape Memory and Superelastic Technologies[C]. Califronia, USA, 1994. 371- 376.
  • 7[4]Chiodo J D, Anson A W, Billett E H, et al. Eco-design for active reassembly using smart materials[A].Pelton Alan, Hodgson Dared, Russell Scott, et al.SMST-97 Proc 2nd Intl Conf on Shape Memory and Superelastic Technologies [C]. California, USA,1997. 269-274.
  • 8[5]van Humbeeck J. Non-medical applications of SMAs [J]. Mater Sci and Eng, 1999, A273 -275:134 -148.
  • 9[6]Ma R Z, Jiang M H, Xu Z Y. Introduction to Functional Materials [B]. Beijing: Metallurgical Industry Press, 1999. 550-562.
  • 10[7]Hodgson D E. Damping application of shape memory alloys[J]. Materials Science Forum, 2002, 394 - 395:69 - 74.

共引文献3

同被引文献16

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部