期刊文献+

基于时间序列ACO-BP神经网络在基坑变形预测中的应用研究 被引量:4

Study on Application of Time Sequence Based ACO-BP Neural Network in Prediction of Foundation Pit Deformation
下载PDF
导出
摘要 BP神经网络技术因其良好的非线性动力学特性、函数逼近能力、自组织和自适应能力,已广泛应用于基坑变形预测中。但实际应用过程中发现BP神经网络具有收敛速度慢、初始权阈值对计算结果影响较大,且易陷入局部最优等缺陷。采用引入具有启发式寻优、全局优化特点的蚁群算法优化BP神经网络,对基坑变形进行预测,并与BP神经网络进行比较。结果表明:ACO-BP神经网络模型预测基坑变形可行;预测精度高于BP模型,且结果稳定、速度较快、误差满足工程的要求。 BP neural network technology,due to its excellent nonlinear dynamic characteristics and its good performance in function approximation,self-assembling and self-adaptivity,has been applied to prediction of foundation pit deformation widely; however, it is found in actual application to be imperfect with slow convergence,large impact of initial weight threshold on calculation result,and easy to be trapped into local optimization. Therefore, Ant Colony Optimization, which is featured by heuristic optimizing and global optimization,was introduced to optimize BP neural network and predict the deformation,then the results of the both methods were compared. The result shows that ACO-BP neural network model is feasible in prediction of foundation pit deformation with higher accuracy than BP model; and the prediction is of stable result,fast speed and the error meeting the project requirement.
出处 《路基工程》 2015年第2期58-62,共5页 Subgrade Engineering
关键词 人工神经网络 时间序列 BP神经网络 蚁群算法 基坑变形 预测 artificial neural network time sequence BP neural network Ant Colony Optimization foundation pit deformation prediction
  • 相关文献

参考文献6

二级参考文献38

  • 1叶志伟,郑肇葆.蚁群算法中参数α、β、ρ设置的研究——以TSP问题为例[J].武汉大学学报(信息科学版),2004,29(7):597-601. 被引量:155
  • 2尉询楷,李应红,王硕,路建明,汪诚.基于支持向量机的航空发动机滑油监控分析[J].航空动力学报,2004,19(3):392-397. 被引量:33
  • 3王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 4陈永强.[D].哈尔滨:哈尔滨工业大学,2003.
  • 5Lapedes A,Farber.Nonlinear signal processing using neural network:Prediction and system modeling[R].Technical Report LA-UR-87-2662,Los Alamos National Laboratory.Los Alamos.NM,1987.
  • 6Weigend A,Rumelhart De,Huberman B A.Predicting the future:a connectionist approach[J].International Journal of Neural System,1990,(1):195-220.
  • 7Vapnik V.The nature of statistical iearning[M].New York:Springer,1995.
  • 8Francis E H Tay,Lijuan Cao.Application of support vector machines in financial time series forecasting[J].Omega,2001,29:309-317.
  • 9Ford J.Chaos at random[J].Nature,1983,305(20):17-24.
  • 10Takens F.Detecting strange attractors in turbulence[A].In:Rand D A,Young L S.Dynamical Systems and Turbulence[C].Berlin:Springer-Verlag,1981.

共引文献146

同被引文献47

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部