期刊文献+

基于社团并行发现的在线社交网络蠕虫抑制 被引量:1

Parallel Community Detection Based Worm Containment in Online Social Network
下载PDF
导出
摘要 随着在线社交网络(Online Social Network,OSN)的快速发展,OSN蠕虫已经成为最具威胁的网络安全问题之一.为了防止OSN蠕虫的快速传播,文中提出了一种基于社团并行发现的OSN蠕虫抑制方法.首先将分布式图计算框架Pregel和基于标签传播的社团发现算法(Label Propagation Algorithm,LPA)相结合,提出了一种能够处理大规模OSN网络社团发现问题的并行LPA算法(Parallel LPA,PLPA).其次,文中在PLPA算法的基础上给出了3种社团关键节点的选取策略,并提出了相应的OSN蠕虫抑制方法.最后,通过在两组真实数据集上进行的社团并行发现及OSN蠕虫抑制仿真实验证明了文中方法的有效性. With the rapid development of Online Social Networks (OSNs), worms propagating in these networks have become one of the most threatening security problems. To contain these rapidly spreading worms, in this paper, we propose a defensive measure which is based on parallel community detection in OSNs. Specifically, according to the Pregel data-processing infrastructure, we implement a new parallel version of label propagation algorithm (PLPA) that is capable of quickly finding communities in OSNs owning millions of users. And then we give three definitions for the influential users to whom we will first distribute patches to contain the propagation of OSN worms. To evaluate the performance of our approaches we test them on our simulating framework with two large-scale OSN datasets and analyze the experimental results which can show the effectiveness of our approaches.
出处 《计算机学报》 EI CSCD 北大核心 2015年第4期846-858,共13页 Chinese Journal of Computers
基金 国家"九七三"重点基础研究发展规划项目基金(2012CB315804) 国家自然科学基金(61073179) 国家自然科学基金重大研究计划(91118006) 北京市自然科学基金(4122086)~~
关键词 社团并行发现 在线社交网络 蠕虫抑制 社会计算 社交网络 parallel community detection online social network worm containment social computing social network
  • 相关文献

参考文献30

  • 1Watts D J, Strogatz S H. Collective dynamics of ' Small world networks. Nature, 1998, 393(6684): 440-442.
  • 2Barabasi A L, Albert R. Emergence of scaling in random networks. Science, 1990, 286(5439): 509-512.
  • 3Cao Y, Yegneswaran V, Porras P, Chen Y. PathCutter: Severing the self-propagation path of XSS JavaSeript worms in web social networks//Proceedings of the 19th Network and Distributed System Security Symposium (NDSS). San Diego, USA, 2012.
  • 4Livshit B, Cui W. Spectator.. Detection and containment of JavaScript worms//Proceedings of the USENIX Annual Technical Conference on Annual Technical Conference. Boston, Massachusetts, 2008:335-248.
  • 5Xu W, Zhang F, Zhu S. Toward worm detection in online social networks//Proceedings of the 26th Annual Computer Security Applications Conference (ACSAC). Austin, Texas, 2010:11-20.
  • 6Sun F, Xu L, Su Z. Client-side detection of XSS worms by monitoring payload propagation//Proceedings of the 14th European Symposium on Research in Computer Security (ESORICS). Saint-Malo, France, 2009:539-554.
  • 7Zhu Z, Cao G, Zhu S, et al. A social network based patching scheme for worm containment in cellular networks//Proeeedings of the IEEE INFOCOM. Rio de Janeiro, Brazil, 2009.. 1476- 1484.
  • 8Nguyen N P, Xuan Y, Thai M T. A novel method for worm containment on dynamic social networks//Proceedings of the 2010 Military Communications Conference (MILCOM). San Jose, USA, 2010:2180-2185.
  • 9Nguyen N P, Dinh T N, Tokala S, Thai M T. Overlapping communities in dynamic networks t Their detection and mobile applications//Proceedings of the 17th Annual Interna- tional Conference on Mobile Computing and Networking (MobiCom). Las Vegas, USA, 2011, 85-96.
  • 10Girvan M, Newman M E J. Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the USA, 2002, 99(12) : 7821-7826.

二级参考文献69

  • 1Dean J, Ghemawat S. MapReduce: Simplified dala processing on large clusters//Proceedings of the Conference on Operating System Design and Implementation(OSDU04,). San Francisco, USA, 2004: 137-150.
  • 2Thusoo A, Sarma J S, JainN, Shao Z, Chakka P, Anthony S, Liu H, Wyckoff P, Murthy R. Hive: A warehousing solution over a map-reduce framework//Proceedings of the Conference on Very Large Databases (VLDB' 09). Lyon, France, 2009:1626-1629.
  • 3Olston C, Reed B, Srivastava U, Kumar R, Tomkins A. Pig Latin: A not-so-foreign language for data processing//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD' 08). Vancouver, BC, Canada, 2008:1099 1110.
  • 4Bu Y, Howe B, Balazinska M, Ernst M D. HaLoop.. Efficient iterative data processing on large clusters//Proceedings of the Conference on Very Large Databases (VLDB' 10). Sin gapore, 2010:285-296.
  • 5Ekanayake J, Li H, Zhang B, Gunarathne T, Bae S-H, Qiu J, Fox G. Twister: A runtime for iterative MapReduce// Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing. Chicago, Illinois, USA, 2010:810-818.
  • 6Wilson G V. Practical Parallel Programming. Cambridge, MA.. MIT Press, 1995.
  • 7Valiant L G. A bridging model for parallel computation. Communications of the ACM, 1990, 33(8): 103-111.
  • 8Dean J, Ghemawat S. MapReduce: A flexible data processing tool. Communications of the ACM, 2010, 53(1): 72-77.
  • 9Pavlo A, Paulson E, Rasin A, Abadi D J, DeWitt D J, Mad den S, Stonebraker M. A comparison of approaches to large scale data//Proceedings of the 2009 ACM SIGMOD Interna tional Conference on Management of Data (SIGMOD' 09) New York, USA, 2009:165-178.
  • 10Stonebraker M, Abadi D J, DeWitt D J, Madden S, Paulson E, Pavlo A, Rasin A. MapReduce and parallel DBMSs: Friends or foes? Communications of the ACM, 2010, 53(1) : 64-71.

共引文献94

同被引文献18

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部