期刊文献+

基于神经网络的口令属性分析方法 被引量:1

Analysis Method of Password Attributes Based on Neural Network
下载PDF
导出
摘要 提出了一种适用于大量口令的分析方法,通过神经网络建模分析,挖掘口令的各项属性间可能存在的关系。通过对大量不同应用类型的口令进行属性赋值,进而利用MATLAB的神经网络工具完成建模、训练学习和仿真测试,从中找出潜在的有价值的属性间关系或规则,并根据这些关系由已知的属性值推断出未知属性值,或根据这些属性规则生成反映用户口令设置习惯的暴力破解字典,为口令破解和口令恢复提供一定的指向性和帮助。 This paper proposes an analyzing method which is fit for a large number of passwords. By building up a neural network model, it can analyze and dig for potential relationships between password attributes. After attribute assignment for passwords of different application types, it can utilize neural network tool in MATLAB to finish model building, training and simulation testing, in order to find out potential and valuable relationships or rules between attributes. With such relationships, it can help to deduce unknown attribute values from the already known ones, or provide some directivity help for password cracking and recovery work by generating brute force cracking dictionary, which reflects the users' habits of password setting.
出处 《微型电脑应用》 2015年第4期45-47,共3页 Microcomputer Applications
关键词 神经网络 口令 属性赋值 分析 Neural Network, Password, Attribute Assignment, Analysis
  • 相关文献

参考文献4

二级参考文献37

  • 1陈铁明,蔡家楣.基于神经网络互学习模型的密钥协商协议[J].计算机研究与发展,2006,43(z2):205-209. 被引量:1
  • 2高雪,张焕国,孙晓梅.一种改进的一次性口令认证方案[J].计算机应用研究,2006,23(6):127-128. 被引量:18
  • 3Karlof C, Sastry N, Wagner D. TinySec: A Link Layer Security Architecture for Wireless Sensor NetworksffProceedings of the Second ACM Conference on Embedded Networked Sensor Systems. Nov. 2004
  • 4Kinzel W, Kanter I. Interacting neural networks and cryptography[J]. Advances in Solid State Physics,2002,42:383
  • 5Volkrner M. Authenticated tree parity machine key exchange [OL]. 2004. iaer. org/2004/204, ps. gz
  • 6Lauria F E, Neurocrytology O, Caianiello E R, et al. Parallel Architectures and Neural Networks// Third Italian Workshop [A]. Singapore, 1990: 337-343
  • 7Metzler R, Kinzel W. Interacting neural networks. Phys. Rev., 2000,E 62:2555
  • 8Kanter I , Kinzel W. The theory of neural networks and cryptography//Proceedings of the XXII Solvay Conference on the Physics of Communication, 2002 : 631
  • 9Rosen-Zvi M, Klein E, Kanter I, et al. Mutual learning in a tree parity machine and its application to cryptography. Phys. Rev. , 2002,E 66:066135
  • 10Ruttor A, Kinzel W, Shacham L, et al. Neural cryptography with feedback. Phys. Rev. ,2004,E 69:046110

共引文献17

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部